Acerca de este libro

Esta es una copia digital de un libro que, durante generaciones, se ha conservado en las estanterías de una biblioteca, hasta que Google ha decidido escanearlo como parte de un proyecto que pretende que sea posible descubrir en línea libros de todo el mundo.
Ha sobrevivido tantos años como para que los derechos de autor hayan expirado y el libro pase a ser de dominio público. El que un libro sea de dominio público significa que nunca ha estado protegido por derechos de autor, o bien que el período legal de estos derechos ya ha expirado. Es posible que una misma obra sea de dominio público en unos países y, sin embargo, no lo sea en otros. Los libros de dominio público son nuestras puertas hacia el pasado, suponen un patrimonio histórico, cultural y de conocimientos que, a menudo, resulta difícil de descubrir.
Todas las anotaciones, marcas y otras señales en los márgenes que estén presentes en el volumen original aparecerán también en este archivo como testimonio del largo viaje que el libro ha recorrido desde el editor hasta la biblioteca y, finalmente, hasta usted.

Normas de uso

Google se enorgullece de poder colaborar con distintas bibliotecas para digitalizar los materiales de dominio público a fin de hacerlos accesibles a todo el mundo. Los libros de dominio público son patrimonio de todos, nosotros somos sus humildes guardianes. No obstante, se trata de un trabajo caro. Por este motivo, y para poder ofrecer este recurso, hemos tomado medidas para evitar que se produzca un abuso por parte de terceros con fines comerciales, y hemos incluido restricciones técnicas sobre las solicitudes automatizadas.
Asimismo, le pedimos que:

+ Haga un uso exclusivamente no comercial de estos archivos Hemos diseñado la Búsqueda de libros de Google para el uso de particulares; como tal, le pedimos que utilice estos archivos con fines personales, y no comerciales.
+ No envíe solicitudes automatizadas Por favor, no envíe solicitudes automatizadas de ningún tipo al sistema de Google. Si está llevando a cabo una investigación sobre traducción automática, reconocimiento óptico de caracteres u otros campos para los que resulte útil disfrutar de acceso a una gran cantidad de texto, por favor, envíenos un mensaje. Fomentamos el uso de materiales de dominio público con estos propósitos y seguro que podremos ayudarle.
+ Conserve la atribución La filigrana de Google que verá en todos los archivos es fundamental para informar a los usuarios sobre este proyecto y ayudarles a encontrar materiales adicionales en la Búsqueda de libros de Google. Por favor, no la elimine.
+ Manténgase siempre dentro de la legalidad Sea cual sea el uso que haga de estos materiales, recuerde que es responsable de asegurarse de que todo lo que hace es legal. No dé por sentado que, por el hecho de que una obra se considere de dominio público para los usuarios de los Estados Unidos, lo será también para los usuarios de otros países. La legislación sobre derechos de autor varía de un país a otro, y no podemos facilitar información sobre si está permitido un uso específico de algún libro. Por favor, no suponga que la aparición de un libro en nuestro programa significa que se puede utilizar de igual manera en todo el mundo. La responsabilidad ante la infracción de los derechos de autor puede ser muy grave.

Acerca de la Búsqueda de libros de Google

El objetivo de Google consiste en organizar información procedente de todo el mundo y hacerla accesible y útil de forma universal. El programa de Búsqueda de libros de Google ayuda a los lectores a descubrir los libros de todo el mundo a la vez que ayuda a autores y editores a llegar a nuevas audiencias. Podrá realizar búsquedas en el texto completo de este libro en la web, en la páginahttp://books.google.com

This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

Google books

https://books.google.com

()

$$
5=? \text { a }, 1 .
$$

Digtraco byoogle

HOBBIUS

Heauton-timorumenos.

A CONSIDERATION

$$
\mathrm{MHO}{ }_{\mathrm{B}}^{\mathrm{O}} \mathrm{~F} \varepsilon s \mathrm{his}
$$ DIALOGVES EPISTOLARY DISCOURSE Addreffed, To the Honourable ROBERT BOYLE, Efq.

Ef 7 OHNWALLIS.D. Profeffor of Geometry in Oxford.

$$
O X F O R D .
$$

Printed by A. \& L. Lichfield, for Samisel Thomfon, at the Bifhops.bead in S.Pauls Churchyard, Lendon, 1662.

MVSEVM
BRITAN NICVM

I N D EX.

THe Author of the Dialogres, confidered. paç. 1. p.14. His writing Dialogne-mife. His Firft Dialoguc.
His Criucks, and Elegancies.
p. 15.
p.16.

Oi Numbring by Tens.
p. 8.

Hetber Chaiuxans or Agyptians,were the more Antient - Mathensaticians.

Of Algebra, Analyticks, Symbols. \quad p.22,30,31,32. Namber, Unite, Fractions, Sunds.
p. 23.

Wisther Ethicks, Politicks, \&cc.be Mathematicks: P. 25. ismatitie, Continued and Difcret; Mixt Mathematicks. p. 25. Geomitric, Science, Demonfration*
ihc Principle of Magnitude.
A Point.
Hie Second Dialogue.
p.28.30.89.91.
p.28.
9.91.

His Third Diglogme.
p.29.

Ariocis of 3 or 4 places; Decimal Froctions. \quad p.;o. Riding, Dividing, and Subducting Skrd Roots. p.33. 108. 110. 117.

Eymologies, лорома $\chi^{d} \alpha$, Accurati Speech.p.33.3 3.48.58.72. Of Homugeneous Quantiiies.
Of Incommeenfurable and Irrationial Lines.p.43-56.108.1 18. His Fourth Dialogue.
Ration, Proportion
Of Euclide's Definition of-Ration.
And of Compound Ration.
The Ouantitic of a Ration.
Propertion Duplicate, Triplicate, \&c.
P-49.
p.49.
P.57.
p. 63.
p. 61.63.
p. 69.

Diapa.

INDEX.

Diapafon, Diapente, Diatefaron. Compofition by Addition of the Exponents. His Fifth Dialogue.
The Angle of Contact.
Degrees of Crookedneffe.
Of Conick Sections.
The Doctrine of Lifinites.
His Sixth Dialogme.
His 12 Qinadratures of the Circle.
Of the Cycloide.
His Seventh Dialogne.
Duplication of the Cube.
Of the Sociesie at Grefham-Colledge.
Pneumatick Experiments ; touching the Air.
His Simple Circular CMotion.
His Pbyjicks.
The Conclufion.

ERRATA.

P. 26.1. 28. not. 1. ult. Menfurabilis. P. 36. 1.ult. fwallows. P. 54. 1. 11. sate.

hobbius

Heauton-timorumenos.

 OR
AConfideration of $\mathrm{M}^{\mathrm{t}} \mathrm{HOBB}$ ©

 his Dialogues. In an Epiftolary Dilcourfe, Addreffed To the Honourable
R
 QBERT Boyle, E / q;

$$
S I R,
$$

Was told a while fince, that Mr. Hobs bad written a Book againft You, for being acquainted with D. W. and me. And, upon view of it, I find that he hach done me the favour, to joyn me therein with fo Honourable a perfon, by priting againft us both. But, as (I prefume) you doe not fear to Suffer much by that O ppoftitien; fo neither do I think

HOBBIVS,

!y felf Oblig'd for this Favour : For, though the Hurt be iffe, the Favour is more, than was intended.
The Piece you cannot fufpect to be Spurious; bearing ach perfect lineaments of his Pen who is the reputed Faner ; and fo great conformity to thofe others of the fame rood.
-L_Facies non una fororkm, Nec diverfa tamen.-... The grearelt difference is, that, He is much improved ; ins, and expose himfelf every day more than other;and more n deed "than I could reafonibly have expected be would lave done. In fo much that I cannot but profeffe fome Re'enting Thoughits;' (theugh I have formerly had occafion to ufe him fomewhat courfely,) to fee an old man thus fret and forment bimfelf, 'as now he doth in his old Age, to no purpore. And if you will give me leave to Apologize for your Antagonift, I think there is much to be faid why You thould alfo pitty him. (Nor as if he did Defetve ir, bur becaufe he Needs it.) And, (as Cbremes in Terence, of his 'eawris tt' $\mu a p \dot{x} \mu \varepsilon$ 谒 Senex, his Self-tormenting MEnedemus.)

Cum videam mifersm buna tam excruciarier, Miferet me ejus. Quod potero adjutabo fexem. Indeed, if any Danger were like to enfue (upon this piece of Clazrity fo placed') to the prejudice of any part of real Learing : I worild not be fo cruel to Others, as to perfivade You, with their Injury, to Spare Him. But fince that evil is fufficiently provided for (by difcoveries already made in that kind,) that the world is nor, for the fature, likely to be imposed upon by his Paralogifms, and $\Psi \varepsilon u \delta \gamma$ ecipñ μ ala, (the nande of Hobbes not bearing now any great authority with intelligent perions) it will be no difhonour for You, to Contemn an Enemy that cannot Hurt; or, to give Quarter, though he fcorn to Ask it.

And, being fecure of this danger : You are in the next place to confider the Temper of the Man, (which is one of the firlt confideration that I am to propofe to You, il
move pitty ;) A perfonexrreamly P affionate and Peevifh, and wholly Impatient of Contradiction. A Temper, which whether it be a greater Easlt, or Torment, (to one who mult io often meet with what he is fo ill able to bear,) is hard to fay.
And to this FretfulHumour, (Torment enough alone) You mult adde Another, as bad, which feeds it. You are therefore next te contider him, as one highly Opinionative and Magiflerial. Fanfiful in his conceptions, and deeply Enamoured with thofe Phantafmes, without a Rival. He would be thought, of All that are, or ever bave been, the onely knowigg Man. And he doth not fpare to profeffe, upon all occafons, How incomparably he rhinks Himfelf to have \int urpaffed All, Ancient, Modern, Schools, Academies, Perfons, Societies, Philofophers, Divines, Hearhens, Chriftians; How 'Defpicable he thinks all Their writings, in comparifon of His ; and, What Hopes he hath, Thar, by the soveraign command of fome Abfolute Prince, all other Doctrines being sxploded, his new Dictates ghould be peremptorily inpopfed, io bealone taught in all Schools, and Pulpits, and univer fally fubnsitted to. Somewhat to this purpofe you may fee colletted out of him; by my learned Colleague Dr. Ward, (in the firlt Chapter of his Exercitation on Mr. Hobbes, his Phi lofophy,) as a Specimen onely of what you cannot miffe to meet with, in Mr. Hobb's, at every turn : For, to recount. All which he fpeaks, of Himfelf, Magnificently ; and, Contemptoufly, of all Others; would filla Volume.
'Twas a motion made by one (whom I will not name) Thit fome idle perfon fhould read over all his Books; and, collecting together his Arrogant, and Supercilious fpeeches, Applauding himself, and Defpifing all other men; fet them forth in one Sysophis ; with this Title, Hobbius dt S_{c}. What a pretty piece of Pageantry this would make, I fhall leave to your own thoughts : Yet am not forward to fecond the motion, lelt the perfon put to this penance, flould be neither Idle, nor well imployed.

Now, where fo much of G an-powder, and Timder, is laid in ; do but confider, how much he lies at the mercy of every man; who, by one Spark of Fire, produced by the leaft Collifion, may Blow him up. And think but, in what a Flame he mult needs be, when he meets with others, of fo much a different Opinion, from what he hath conceived of himfelf.

For though the admirable Sweetneffe of your own N_{1} ture, and Obliging Deporment, have nor given Your Ho nour the Experience of fuch a Temper: yer Your Contem. plation muft have needs difcern'd ir, in thofe Sympromes which you have feen it work in others; (like the ftrange Effervefcence, Ebullition, Fumes, and Fetors, which you have fometime given your felf the content to oblerve, in fome aitive Acrimonious Chymical Spirits, upon the injection of iome contrariant Salts;) flrangely Vexing, Fretring, and Tarmenting it felf ; while it dorh but adminifler Sport to the unconcerned Speitatour. Which Temper, being fo eminent in the Perfon we have to deal with; Your generous Nature, which cannor bur pity Afliction, (how much foever deferved, muft needs bave fome Compaffion for him: Who befides thofe exquifite Torments wherewith he doth Afflict hinfelf, (like that

Tarmeno Siculinon invenere Tyranni
Tormentum majus,)
is unavoidably expofed to thofe two great mifchiefs; an Incapacity, to be Taught, what be doth not know; or, to be Advifed, when be thinks amife: And moreover, to this Inconvenience, Thar he mult never hear his Faults, bast from bis Adverfaries; For thofe who are willing to be repured Friends, muft either, not Adverrife what they fee amiffe, or, In ommode themfelves.

But you will ask, What need he thus Torment himiel? What need of pitty? If be bave hopes to be admitted the Ne Dittator in Pbilofophy; Civil, and Natural; in

Schools, and Pulpits; and to be ovned as thie only Magifer Sententiarum; What would he have more !

True. If he have. But, What if he bave not? That he bad fome hopes of fuch an honour, he hath not been fparing to let us know : and was providing againft the Envy thit might attend ic; (Nec Deprecabor Invidiams ; Sed, Axgendo, Ulcifcar, was his Refolution.) But I doubr thofe Hopes are at an end. He did not find (as he expeeted) that the Fairies and Hobgoblins (for fuch he reputes all that wrote before him) did vanif prefently, without more ado, upon the firlt appearance of his Sun-laine. Whom though he thought, (non Pugnando, Sed) inferendo Diem, to chafeaway; yer he finds that (notwithftanding his new Light,) certant viventes. And (which is worfe) while he was on the one fide, Guarding himfelf againft Envy, he is on the other fide, unhappily Surprifed, by a worfe Enemy, called Contempt, and with which he is leffe able to grapple. On which account we find him now (with a Fruffra dum vivo;) Adjournirg his Hopes (of being Dictator) at left till he be Dead. (But what Pofterity may do, who can tell? For, though hebe Difpifed, while he is Alive ; yer who knows but that, when he is Dead, he may be-.-forgotren.)
His great Leviatban(wherein he placed his main Atrengh) is now fomerwhat our of feafon : Which, upor deferting his Royal Mafter in diftreffe, (for he pretends to have been the Kings Tutor, though yer, from thore who have molt reafon to know is, I can find but little ground for fuch a pretenfe, was written in Defenfe of Olivers Title (or whoever by wharfoever means can ger to be upmoft;) placing the whiole Right of Government, meerly in Strength; and Abfolving all his Majefties Subjeets'from their Allegiance, when ever he is not in a prefent capacity to fors Obedience.
But (befides the mif-adventrere of thar piece) I do n find that even while it miohr be thought in feafon, ir
met with fuch Acceptation as be expected: Unleffe with fuch, as thought it a piece of wit to pretend to A, ber $(m$; Who would be content the rather to favour it, nor for that any Itrength was produced to Prove, but becaufe they flould be now able to fay, that fone body durft Affrm, what they would be thought to Wifh. For, one while they find him affirming, That, beinde the Creation of the World, there is no Argument to prove a Deity : Another while, That it cannot be evinced by any : rgument, that the World had a beginning; and, that, wherher it had $0:$ no, is to be decided nor by Argumenr, bur by the Magillrates Authority: And, Feering upon every rurn at 1 m material Subftances: But, no where proving either the Impoffibility, or the Non-exiftence of them.

Another Difafter there is befallen him, which dorh not a litcle trouble him. His New-Divimity was to be flanker'd by his \boldsymbol{P} bilofophy : and, if any Divines durtt to quarrel at ir, they were to be fhook off 'ivith this Anfiver, They urderfood it not, for niant of Pbilofophy: (For he would not have it thought, that a Divine can be a Philofopher, any more than that a Subftarce can be Incorporeal.) His Pbilofoplyy is to be Releeved by his Mathematicks: and therefore, if any who pretend to Philofophy. (which fome Phyftians may be permitted to do) fhall think his Proofs to come thort ; his Anfwer's ready, 'Tis want of Geometry that makes them think $f 0$; and that he doth profeffedly som omnibus ámania, fed aligua Geometris folis fcribere. Corp. Epift. And left they fhould think it poffible to underftand fomething without Geometry; he tells them plainly, That, whoever doth Study, Write, or Talk of Natural Philofophy, without firft beginnirg at Geowetry, they do but loofe their Labowr, and ABuge thofe who Read or Hear them. Corp.c.6.9.6.

But now 'tis fo unhappily fallen out, that Geometry, which he thought his greatelt Sanctuary, hach moot failed him. Nor is there any Tribe of men whatever, whoare

Geometry. Of whom, I fuppore, you have not yet hear of any one man, who is become his Profelyte, of will un darrake to be his Voncher in Geometry. And doubtleffe what ever elfe he is nor, he is left of all found to be Geometrician.
Now, Sir, 'Tivould grieze a man, (if it were no more', when he hath built fuch fine Caftes (in the Air) to fee the Foundation fink; And his Reputation, which was to be mounted on the top of thofe Pinnacles, tumble with them His Geametry was to have given Credir to all the relt ; anc is it nor able to Support ic felf? A man impatient of Contra aittion, is not (it's like) very well pleafed wich a Difap pointment.

But this is not all. To have fallen filently, and in the dark undifcerned ; and failed of Reputation, but without \mathcal{R}_{2} proach; had been but a bare Difappointment, and loffe a labour; 'twere but lucrum cef ans, not dannum emergens (And, you know, many a man there is who lives well an. comfortably, with good Refpeet and Reputation, whe hath not yer the Fame of being a Mathematiciam; Anc others, without prerending to dance on the Ropes," ma. malk on the Ground fafely, withour Reproach:) Bur, to fal thus mounted, where all the World are invited ro be Specta tors ; and, with fo much Ofentation, become Ridiculons; i an Affliction above the Itrength of fuch a Mortal in Bear and may wel pretend a Righe to fhare in that Compaffiou lodged in your Noble Breaft for perfons in Dittrefle.

You'l ask perhaps, What made him, having fo tittle, think he had fo much Geometry? If you will give me leas to conjesture, I think 'ris'this. He had, it's like, in h younger daies gotren fome fmall fmattering in the Machi maticks : And, becaufe he dorh nor remember, of all t Acquaintance, any who did then know more than he, th are now alive; (and it is not to beimagined, That an who did fer ont later, fhould over-ran him ;) he thoug be might fafely conclude, Himfelf to $k \quad$ "ft Math
matician alive. And then, what hould hinder him from vaunting himfelf to to be?

And whereas you may fuppofe, Thas the reading of other mens Writings might difabufe him:'Tis much otherwife. For, having once entertained that former notion, Of his own furpaffing all others; He doth row profeffedly Atudy Nature, not Books, (fince that he knovs already more than they can Teach; and what himfelf is nor able to find in the Search of Nature, 'tis in dain to hope for in the Writings of men:) Or (as a great Perfon was pleafed to phrafe it) He Thinks too much, and Cowverfes too little, either with Books, or Men.

And hence it comes to paffe, That, Much of what he tukes to be New Difcoveries, (and thinks the World bezoldon for to him) are known by others to be but Errours long fince laid afide, or Triviall Truths: And ofr-miftakes, for Neruand more Compendious Waies, thofe Bogs and Presipices, which the t xperience of wifer perfons had taught :hem to decline. Yer (for want of Convirfe, or Indifpoedneffe to Improve it,) he can as hardly be induced to :hink oiher than Thar be is a Great Mathematician; as Heraleon (in Argenis) to believe that he was not Poliarchus.
I forbear to mention (left I might feem to Réproach hat Age which I Feverence) the Difadvantages which se may fuftain by his Old Age. Which though Younger zerfons in good manners fhould fometimes Diffemble, and eem not to take notice of ; yet in a ferious Argument, if ve will Compute arighr, they ought to be confidered ; And tis Injuftice not to make allowance for them. 'Tis poffible hat Time and Age, in a perfon fomewhat Morofe, may have Riveted fafter that preconceived opinion of his own Worth nd Excellency beyond orhers.' I is poffible alfo, that he nay have Forgotten much of whas once he knew. He nay perhaps be fomerimes more Secure, than Safe, while zufting to what he thinks a firm Foundation, his Footing
failes him: Nor alivaies fo Vigilant or Quick-fighted, as to difcern the Incoberence or Inconfeguence of his own Difcourfes; unwilling norwichltanding to make ufe of the Eyes of other men, left he fhould leem thereby to difparage his'orn. But certainly (though his will may be as good as ever) his Parts are leffe. Vegere and Nimble (as to Isvention ar le(t) then in his Younger daies.
 Importing their Beft daies to be then Palt. A nd therefore, as to thofe profound Speculations; of Squaring Circles, Doubling of Cubes, \&c. He fhould, in Prudence, have thought fit, (or, been Advifed by his Friends,) either to Attempt fooner, or, at this Age, to Let alone, fuch Inquiries ;

or qua non Viribus iffis

Munera conveniunt.

What he may have been in his Younger years, we kno:v not: Bue certainly, at this Age, (though he may be willing to Bite, or Nibble,) his Teeth are too Old to Crack Nuts. And is it not Pity, that, by weak, Attempts, at there years, he fhould forfeit that little Reputation which before be had ? and which, perhaps, if he had forborn to Write, he might have yer retained? (For chere are, who, mbile they hold their peace, are accounted wife.)

While he had endeavoured only to raife an Expectatian, or put the World in Hopes of what great things he had in band, (to render all Pbilofophy as Clear, and Certain, as Euclide's Elements ;) If he had then Died ; it might perhaps have been thought by fome, That the World had been deprived of a great Philofopber; and Learning fuflained an unvaluable Loffe by the Abortion of fo defired a Piece : But, fince that Partus Moxtis is come toright; and found to be no more than what little Animals have broughe fortin, and that, Deforwed inough and Unamiable: I do not find, bur that he might have raken a time fooner to go off the Stage, with more Advancage, than now be
do. And tis (you know) no fmall Mif-fortune,for a man to Out-live his Reputation.

And by this time, perhaps, you may fee caufe tó Pitty bim, while you fee him falling. But, if you confider him tumbling beadlong, from fo great a height; 'swill make fome Addition to that Compaffion, which doth already begin to work. You are therefore next to confider, thar when, upon the account of Geomestry, he was (unfafely) mounted to that Height (of Vanity;) he did, unhappily, fall into the hands of two CMathematicians: who have ufed him fo unmercifully, as would have put a perfon of greater Patience, into Pafion: And, meeting with fuch a Temper, have fo difcompofed him, that he hath ever fince talk'd idly. And, to augment the grief, thefe CMatbsmaticians were borh Divines; A forc of men whom he doth left of all Admire, and had rather have fallen by any other hand. Thefe Mathematical Divines (a term which he had thought Incompoffole) begin to Unravel at the wrong End ; and, while he thought they fhould have firt wntil'd the Roof, and by degrees gone down-ward; they Itrike at the Foundation, and make the Building tumble all at once; and that in fuch Confufion, that, by Dafhing one Part againft another, they make Each help to deltroy the Whole. They firlt fall upon his laff Referve ; and Rout his Mathematicks: (beyond a poffibility of Ralljinge) And, by Firing bis Mag aziye upon the firlt Affault, make his owa Weapons Fight againft him. Not contented herewith, they Enter the Breach, and purfue the Rowt through his Logicks, Pbyficks, Metaphyficks, Theology: where they find all in fuch Confufion, that no part anifwers other. They find as little found in his Pbilofophy; (Natural, or Civil;) as in his Mathematicks: and, in his Religion, left of all. And, becaure he talks fo much of Accurate Metbod, Legitimare Demonftrations, and other the like fine words, (which what they fignifie with Geomerricians, is undero $A_{\sim} \mathrm{d}_{\text {;) they expect, that, for fuch Now and Daring }}$

Afertions, at left, as thofe againft the Exiftence, or Poffibility, of Incorporcal Subftances, (wherher God, Angels, or the Souls of men ;) againlt all Obligation of Laws, (Humane, or Divine,)further then Strength doth Einforce Obedience; againlt the Authority of the Holy Scriptures, or Word of God, further than the Magiltrate gives them that A uthority; That it is lawful to Say, or Smear, or Do, Any thing that is commanded, (Right or Wrong, Juft or Linjult,) there being no other isule of $\mathcal{F} u f$, or Honeft, bur the Magiftrates command; But withall, that he is no longer a Magiftrate, or hath Right to Command, chan he thath Strength to Compell; and confequently, that 'tis Lawfull, to Rebell or Difobey, when ever we be Able; (with orhers of a like import;) He fhould have produced fome Cogent Argument, or at lett fome very Plauible Reafon : whereas, upon Inquiry, there is no fuch thing to be found; As if saying, or Jeering, were proof enough for fuch perty things. And (fuppofing him to be of the number of thofe, who ought to have a good Mensory,) as if ir had been incumbent on Him, at thefe Years, to Remember at one time avhat he wrires at Another, or, when he turns over a new leaf to remember what had been delivered in the precedent Page ; they do, by Confronting places Inconfiftent, make himftrike out his own Testh.

And, by this time, His Bold Aflertions, without attempt of Proaf, are found unable to ttand alone: His Slender Arguments, where he attempts any; the woful Inconfeguence of thore things pe calls Demonftrations; the Inconfiftence, and Contradittion, of his whole Difcourfe; have made his whole Fabrick to fall with them;
--s--Longiǵg perit labor irritus avi.

I need not tell you, with what Paffion he muft needs receive this Affron. You may well believe that he could not withour Regrer fee his Iabour loft, his Hopes dafh'r, and all his Expectation of future Rer ome to
'Tis true, that after this, he did, a firft and a fecond time, (imprudently,) attempt to Re-affert his lapf'r Goometry: But with fuch Succeffe, as Birds taken with Limetwigs, the more they Flutrer, the more they are entangled. And he would nor have done it, had he not been as unable to Underftand, as to Make, a Demonftration. For who is fo ftupid, (they are his own words,) as both to Miftake in Geometry, and alfo to Per $/ f f$ in in it, when another detects bis $E_{r r o u r}$ to him?

And with as little fucceffe hath he fince endeavoured, when he did ar length Difpair of making good his Omn, to be Revenged on $m y$ Geometry: And (for my fake)on all that durt to fpeak well of me. (For your Honour is not the firt on whom he hath beftowed Complements upon shis aciounr.) Notwithitanding which, I, ann not fo unmerciful, but that I can both piey him my felf, and likewife befpeak You to the fame purpofe (in his own words, Leff.p. 26.35.49.) That, When yous confider the opinion that men woill have of hims and his Geomsetry; When you think, how Dejected he is, and will be for the futwre ; and, how the Griaf of fo much time irrecoverably loft, and the Confideration of how much his friends will be Aframed of him, will accompany him for the rest of his life; You would abave more Compafion for him, than he hath deferved. For, A man of a tenderforehead, after fo musch Infolence, and fo much Con. tumelious language, grounded upon Arrogance and Ignoraxce; spould hardl'y indure to Out-live it. And they that bave. Applauded his Geometry, (I mean, if any fuch be ; for I have not yet heard of any;) bave reafon by this time to dowbe of alt; and, if they can, to Diffemble the Opinion they bad before. And left you thould think me leffe ferious, while I move for Pity; I do ferioully profeffe, that I am in earnef: For, in earneft, I pitty him ; and, I think alfo, that you have reafon fo to do. Efpecially if you confider, that (according to the Temper before defcribed) he looks upon

Giaffe; which Magnifes both beyond their jult dimenfions.
Nor doth ic at all abate this ground of Pity, that what Opinion he had of his own Worth was buc a Miftake : For, as on the one hand, even that Miftake deferves Pity; fo,on the orber hand, the Affliction is as grear as if what he conceives were True. For, as to thofe things which do Afflist by working on the Fanfy, What is Beleeved, hath the fame effect as if it were $\int 0$ indeed:

- pariterós pmngunt.
 Credita Veris.

'Tis, To Deprive bim (he faies) of the Honour be bath Merited ; To Deprive bim of the Friendjhip of all the World; and, No little Wickedneffe. It cannor then be but that Heak-ton-timorumenos apon thefe Confiderations, mult reeds Afliit bimself deeply, and need your Pitty.
But (you'l ask perhaps) fhould a perfon, becaufe himfelf is not well at eafe, be therefore fuffered to Rave, or Reproach all that come in his way, without Controll ?
'Tis fomewhat, I confeffe, that is Objected, But, though I do not think a Lisence of this nature Imiterfally fr to be allowed: Yet I think there is foméwhat to be fid in the prefent cafe, why even this may in fome meafure be connived at in him. Firt, upon that general account, That Loofers may have leave to fprak; For though he had not much perhaps (of Reputation) toloofe : Yets he bath loft much (fo far as a man may be faid to loofe what he never had) of what he Huped for. Next, for that it doth not appear, that his Reproaches are very Dangerous, becaufe not Infective : (like as the Bitings of fome Animals, though very Angry, are not Venomous.) For our felves, (on whom he bath beftowed, I think, as much of that kindneffe as he doth on mof,) do not find that either our Friends do Love us much the leffe, for his Revilings, or Learned Men leffe ε fteem us. And your felf, (I am confident)will as little fuffer on that account as We have done.
There is yes a further Confideration, ${ }^{+\cdots}$, we are not am loth to mention it, left you thould think I grow Severe my felf, while I move You to Pitry. He tells U_{s} fometimes of men leffe awiake, of unffeddy Braines, whom the Speculations of Motion have made Giddy, and'of fome other things (qua dicere nolo) which 'tis Isbumane, not to pardon, becaufe tbey are not Volustary faults. I thall make no other ufe of it, but to borrow a Similisude, which this puts me in mind of. 'Tis with fome $\cdot M_{a n}$, as it is with fome Difeafes which affeet theBrain. While the Symptoms do firlt appear, and the Diftemper begins to work, (before the Difeafe is well difcerned,) it may occafion fevere Cenfures and fharp : Rebukes, from injured By-ftanders, for thofe importane Impertinences or Provocations they meer wirh : But when the Diftemper works high, and the Difeafe is manifelt ; we think thofe Injuries becter vindicated by a Neglett, than by a ferious Defenfe, or Reprehenfion. In like manner, E think, it fares with Mr Hobs at this day: And, that there is not Now, the like need of a ferious Reply, to what he Writes, as when he firft Began. For, (as operatio lafa doth argue a Difeafe, fo) thofe Symptomes contimuing, and increafing, are cerrain Arguments of fome fpecial caufe of Intemebration (as he ppeaks) which we are not furcher to ftruggle with. And upon this Account is was, that, when he publifhed his firf Six Dialogues the laft year ; though fronted againft my felf; I did not think nay felf obliged to make any Reply, becaufe 'twas known fufficiently, by what Perfon, and how Affected, the Dialogues were $\$$ written; Befides, that the Contents thereof were not worth a Book, much leffe Two.. Of which notwithftanding, upon this Occafion, (becaufe it may conduce fomewhat tovards the Enforcement of that Motion which I am now prefling)'twil pofibly be not unfeafonable to give you a (brief) Account.

And I am here firt of all to take notice of a piece of
zrudence. He had in his former writings ofr intimated what Praifes he deferved, and how much he ought to be (ommended for what he wrote. Bur finding others not fo forward, as he deffred, in complying wirh this Intimation, and perceiving that it was refented as favouring fomewhat a Vanity, too grofely to commend himfelf:, He found out a middle courfe, by way of Dialogue, berween A and B, (Thowas and Hobs;) Wherein Theras conmends Hobs, and Hobs commends Thomas, and both commend Thomas Hobs as a third Perfon; withour being guilty of felfcommendarion. For this reafon; and, becaule, he hath found it difficelt to difrourfe with others withour being Contradicted, and (fo) Provoked ; he might think ir molt convenient to talk to himself. Not but that he doth as oft contraduct bimself as any other, (even when he doth not fuutain two perfons,) but thefe Contradictions he can betrer bear ; and, being accuftomed hereunto, he may perhaps in time endure to be contradicted by ochers alfo.
Thefe Six Dialogues (that we may know the Contents of them) are Entituled, An Examination and Emendation of (Modern, or) Hodiern CMathematick: But with this Exubefis, (left his own, being alfo Modern, might be thought to need Emendation,) qualis explicatur in libris Jobannis Wallific. Which yet you are not fo ftrietly to underftand, as if it were meant only of what is delivered by my felf; but, to concern thofe ochers alfo that have been feduced by me, (fuch as $E_{\text {welide, Arifotle, \&ac. which do very fre- }}$ quently, and feverely, fall under the lafh, in this Emenaktion of Hodiern Wallifake Geometry.)

His firf Dialogue(and much of the reft) is moftly fpent in Carping at Words, Ranting at Symtols, and Guirding fometime at Arifotls, fomerime at Exelide, or what 1 am not at all peculiarly concemed in; that I believe you would think my time almoft as ill fpent as his, if I hould employ it in giving you a particular account of all thofe

He is not pleared that I call that which doth direetly Influence all parts of Marhematicks, and is immediatly fubfervienc to them, by the name of M athefis $V_{\text {niverfalis; }}$ becaufe he thinks it doth not contain All Mathematicks. If I fhould tell him(as I may You) that Totum Unizerfale and Totum Integrale are not wont to be taken for the fame; Or that there is fomewhat Univerfally common to All, befide what is Specifel to each Patt: He would tell me (for that is one of his frequent Exceptions) that thofe are Scholaftickwords, not Latine.

He chinks it of moment alfo to acquaint the World (for 'tis better to do fo, then not to be faid to write a Book againft me) That I make ufe of Quamvis or Qnantumvis, where he rhinks $E_{t} /$ would do better; (quantwmvis son fimm prorfus nefcixs.) That fuis is put where he would have faid illimes; and Inftitwat, as he thinks, for inftitueret. That I fay What comes farth in publick (without the word Beak) ufeth to be dedicated to fome or otber (without faying. Perfon;) which is not Inrelligible: For whenever Some comes without a Snbfantive, the word Thing muft ALWAIES be underfood. That for prodeant he would rather have faid prodermet; That Proferre'he thinks to be a better word than Efferre; And Repetendis fingulis more Elegant than Repetendo Singula. And idems erit ac \hat{z}, is Barbarous. (with more of the fame-Alloy.) Which though they be fome of his more choice(Mathematical) Emendations, I do not yet think fo much conducing to the Mending, or Marring, of Modern $M_{\text {athemesticks; as that I need be folicitous about them: And }}$, though I am not eitherConverred or Inftructed by what he hath thus delivered, yet I do not think it fit to makea Book againft it, left you fhould think I have as little to do as he.

I Thall only take occafion, to advertife You of fome Elegancies; which, though You are known to be a great Maiter of Language, yet, I fear, you do not every where obferve. You mult take heed of faying at any time hereafter, that
there be fone woifer tben Mr Hobs; but rather (if You think 10) that fome Perfons be wifer Perions than Mr Hobs. If You fay, This needs not, becaufe every one knowes mbas Subftantive is underftood; You erre again, for You thould bave faid every ome Perfon knowes what fubftantive ly ond is maderfood. Otherwife (as Ms Hobs informs us) it will be thus fupplyed, fome Thing is a wifer Thing than Mr:Hobs; and Every one Thing knowes what fubftantive Thing is underfood. Again, in cale at any time, in. Arithmetick, you meet with this notion $0+0 \Rightarrow 0,0+1=1$. to be exprefs'd in words; take heed of haying, If to Nothing, you adde Norhing, the totall is Nothing; but if ${ }^{\prime}$, Nothing you \mathcal{A} dde One, the totall is Ose : For (xibilo aliguid Apponere) To Adde to Nothing, is noc Elegantly faid. Nor may You fay, thar a Man worth Nothing, may, by good Addition to his Eftate, come to be morth Something : for the Eltate of him thar is worth norhing, is No. thing ; and an Addition to Notbing is very improper. Neither ought You to fay, However I am not Altogetlier of bis opinion in all thirgs, yet \&c. But eAlibough. For However:Altogether doe not well cohere. If you fay that However is not to be conftrued with Altogether; but, However, with, I am not; and, Allogether, with, of his Opinion: Or, that although Hopeever be originally an Adverb of Comparifon, yet by ufe ir is pafled into a Conjuretion Adverfarive (which are Barbarous words) and that it imports as much as this longer Periphrafis, How true foever is be that I am not Sce. Hs rells You, No: But However is certainly to be conftrued nith Altogether; and the fentence to be thus read, However altogether I awn not of bis Opinion, get \&ec, which is nor Elegant; But if inftead of However, you fay Although; it will thus run, very Elegantly, Alibough altogtther I awe not of his opinion, \&cc. Of which I do the rather advertife You; left (in cafe that, notwithftanding my Motion, you Shall yet think fit to fay any thing to Mr.Hobs.) it might be thought in you as great an Errour in

Naturall Philofophy, as it is found in me an Errour in Mar. thematick'; to miltake in fuch an Elegancy. We'l proceed.

I am then to be told ever and anon, That I am a \mathcal{P} resby. terian : (Not becaule, he Knows 'ris True; but, becaufe he thinks 'tis a Refroach.) But I hall be fo far from Reproaching him for his Religion, whatever it be, that I flall not fo much as Charge hime to be of any.
He hath a doubleObjection concerning the Reckoning b Ones,Tens,Hundreds,\&c. The one againit the Antiguity, the other againft the V niverfality, of this manner of Numbring.

He doth not think, p. 2. That the molt A ncient Records extant, and of the mold Ancient times (As that of Gen.r. where the Ages of the firlt Patriarchs are recorded even as high as Adam) to be good evidence thar Numbers were fo reckoned in thole firft Ages of tle World. (For who knows but that the Pra-eA damites might reckon at another Rate.) And againft the Vniverfality of it he objects, p. 33 , that the Welch doe fay un ar bumtheg, (one and fifteen) inftead of fixteen.

For the firft ; he hath a conceit, That the Bookes of CMofes might poffibly not be woritten till the days of Efra; Or that the Pperiarchs Ages are not there reckoned, as in the Times wherein they lived. Of which fanfies, when he doth produce more Authentick evidences, or more Ancient, than what we produce for the Antiquity of that Computation; 'twill be time to think of reinforcing our Argument : (As yet, there is no fuch occafion; nor any reafon to think that Mofes did otherwife Record, than they did Reckon.) And as for his Welch Argument, he knows (if he underfand the language) that $u n$, deg, cant, mil ; are words with them of the fame import, as one, ten, an bundred, a thoufand, are with us. And his un ar bumitbeg, proves no more againft Their, then one dozain and four, or two flone, againft Our reception of that Computation. For though we have occafion to reckou fometimes by fcores, or dozains,
it doth not follow, That therefore we do not admit the reckoning by Tens, Hundreds, and Thoufands. Which both They and We are known to doe.

Another Objection in matter of Hiftory, is this. $(p .2,3$. I had faid 'Tis thought, that Mathematicks; after the Eloud. did flowrifh, firft, amongft the Childeans; then, amongft the Eggptians. \&xc. Whereupon ne doth (with fome Majelty) call me ro account, How do I know that? Why is it fo thought? What Hiftorian ever faid it? 1 Ought (Gays Thomas) to have Nassed my. Autbor: nor is it poffible to reconcile it with Diodorus Siculus. But Hobs is a lictle more mild; he thinks tis credible that I may poffibly have feen it in Some Author: And (upon condition he will excufe my fault in prefuming that he might have known fome Aurhor of that opinion without my Information) I hiall endevour to make Amendssor that Fault, by letting him know that Cicero was of that opinion (De Divinatione, lib. r.) who tells us that Firft of atl, the A syrians, (to beginfirft with the moft Ancient) baving the advantage of a Large and Plain Conntry, and a fair Profpect of Heavien every way, did Obferve and Record the Motions of the Stars, and that hereupon Aftrologers, '(non ex artis, fed ex gentis vocabuio) were called Chaldeans. And, awhile after, that the éEgyptians alfo, by long experience, did learn the like. And Pliny in his Natural Hiftory, (lib. 18.cap. 25.) was of the fame opinion alfo; recounting the four Periods of this knowledge, in this order, Firft the Chaldean, next the Égyptian, then $^{\text {n }}$ the Grecian, and lattly the Roman. And Vitruvius, (lib;9. cap.7.) refers the original of this knowledge, as Peculiar to them ; and by name to Berofus the Chaldean, (the molt ancient that he knew of ;) who upon this account (as Pliny tells us) had a Statue erected, at Athens, zoith a Golden Tongse. And Berofus himfelf (cired by Fofephus) afcribes is to eAbrabam, (a Cbaldean alfo.) Conionant to all which, Fofephoss (a Fewifh writer, and as much as any acquainted with the Antiquities of his own Nation)

Antiquit. lib.I. cap.3. tells us of Seth, and his Pofterities great skill in thefe Arts; and of their two Pillars,(ereqted tor the perpecuating of this knowledge) whereof one was yer extapr in his daies: And of their care to ttanfmit it to their Potterity. And the like of Noah, (cap.4.) his skill in Geometry and Aftroniomy, and his care to tranfmit it to his Polterity. He tells us, (cap. 8.) that Abraham (defcended from them in a direct line) was Eminent in this knowledge: And (cap.9.) thar, upon his going into $\mathcal{C} E g p p$, he did (amonglt other things) teach the $\mathcal{E} g g p t:$ ans, Arithmetick and Affronomy, of which, till then, they where wholly Ignoraint. Suidas alfo (in the word Abegare) and Philo Fudaus, cited by him, do both give Teltimony to the fime purpofe. But I forbear, as needleffe, to cite their words. (So that 'twas well gueffed, that 'tis not ircredible that I might have found fome Author of this Oeinion.) To which we may adde out of Diodorus Siculw (his own Author) what is faid(lib.2.) of the Chaldanns skil herein excelling all mortal men; Of the Stately Texnple of Belus erested by Semiramis, (abour Abrabams time) for their Aftronomical Obfervations ; Of their care to tranfmir this knowledge from father to fon in the fame line ; Of their Obfervations made and preferved for (a time to himfelf incredible) 473000 , years before \mathcal{A} (lexandierstime.' Which incredible number of years, may be corrected by che Chaldenns Obfervations tranfmitted by Califthenes to eArifotle, (upon the taking of Babylon by A Alexander) for 1903 years backwards; (as Simplicius, out of Porphpry, informs us in his Commentary on Arifotle 20 De Calo.) thet is, from about 100 years after the floud, or leffe; dout the time of Pelegs Birth: In whofe daies the Earth s'jaid to be divided, Gen. 10.25. But, till then, the Fanily of Noah, (not being yet fo numerous as to fend out Colonies,) may very well be fuppofed to have taken up heir bibitations (not far afunder) in Chaty (and the arts adjoyning) not far from the place whele the elrk
ruffed, on the Mountains of Ararat: : (And where afrerwards we find Abrabamplaced; rill,upcn Gods command, he removed firtt into Mefopotamia, then to Canaan, and from thence made his journey to \&gypt, carrying with him, as Fofephus tells us, the knowledge of (Mathematicks.) But that \mathcal{E} gypt, a place fo far off from Armenia where the Ark retted, hould, before the birch of Peleg, be fo well Peopled as to fend out Colonies to inhabir Chaldea, (as Mr Hobs from whar is faid by Diodorus Siculus, would have us believe) is fo incredible, and fo unagreeing with Holy Story, with chofe aforecited, and with what Diodorus himfelf (lib.2.) delivers, that it needs no other Refutation.
But the truth is, Diodorus Siculm (however Mr Hobs pleafe to abufe his Reader) doth not himfelf Affirm, or Believe, what Mr Hobs would have Us believe from him. For fee what he cires? Cbaldros (Dicunt) qui in Babilone funt colonos Egyptiorswon, propter Aftrologiam celebrari, guam à facerdotibus EEgyptiis didicerunt. He doth not himfelf Affirm it ; tis but Dickut (the \mathcal{A} gyptians do fo boaft;) and, if you confule the place (lib. 1.) this Dicont, 2 is but fabulantur, (for fo he had faid but a little before;) and thefe fables, he tells us expreffely, that be doth not believe. The fumme of his Difcourfe is to this purpofe.Tbe eEgypsians (he tells us) do fabuloufly affirms (though be doth not believe it to be true) that extypt, being fertijle of A nimals, did firfe breed Gods, and then Men, (as, now, Mice,) and. consequently poss the firff peopied of all the world, and all the reft of the World Colonics from thens; That, about 23000 rears before Alexanders time (or more) one Hermes found out Mathematicks there; And that tbe Chaldxans, one of their Colonies, did from their. Priefts. learn that Aftrology for whish they are fo famed; like as the Fews, another. of their Colonies, did from thems recesive their Rite of Circumsifion. Now, upon fuppofition that thefe fables be true; I grant that the Cbaldeas Aftronomy muft be younger than the Efgptian : Rut if not true, nor to be believed nf :

Now, (which Diodorus could not believe Then;) to what purpofe doth Mr Hobs produce fuch a Teflimony ? And when he tells us; (lib. I.) the exgyptians pretend to have, been Aiftronomers (before Alexanders time) for 23000 years : and the Chaldeans (lib.2.) for 473000 years: If the pretenfes of each may paffe for proof, which do you think muft be the more Ancient? But, allowing borh theid pretenfes to be (as they are) incredible; Yer if theiv Hermes were indeed Mofes, or Fofeph, and Atlas (ancientee then he) Abrabam, or fome others at left of a like antiquity; (and, that they could not be much ancienter, the Hiffory of the Floud doth plainly enforce:) We have found already, Aftronomy in Chaldaa long before: And, to whether of the two, muft iwe then give the precedence? But enough of this. I had faid before, 'T Twas Thought;: and I fee no reafon but that we may think fill, that the Chaldean was the more Ancient. But, what to think of Mt, Hobs, I leave to you. I thall be briefer in the reft.
He hath a great difpleafure at A/gebra all along. He would not have it called A nalyticks; (Diophantus fhould not have been fo feduced by the Hodiern Matbematicians, as to give a Greek Name to a Thing fo Barbarous.) He would not have it thought, p. 3.that any new Propopfitions bave been found by it. Or, that it is a Method of Finding them oxt.(If any fhall think fo, he can confute then in two words, Falfum eff.) Yet tells us that, in Pappus, there be many excellent Propofitions found out by Algebra. He doth believe, that the Spots is the Swn, the CMountains in the CMoon, the Attendamts on Fupiter, the figure of Saturn, \&ec. were not found out by Algebra, (very like;) but by an Ignorant Dutch-manno This Thomas Thinks;and Hobs tells him, It is certainly fo. He doth believe (pag. 5,6.) that Vieta, Owghtred, Cartes, \&c. have not made any Improvement : (in Mathematicks, none at all; That Symbols are not Sherter then Words; That Specious Arithmetick was not introduced by them; but, was thantly practifed by the Ancients; ('tis not therefore to
be condemned as Hodiern :) For Words are Symbols; and, the moff ancient of all: That Algebra is a matter of Chance, (not of Art;) the Peft of Geometry, \&cc. In all which, Ibomas is of the fame mind with Hobs, and doth approve what he hath faid.
He doth not think p. 3, 4, 14. that Geonsetry is leffe licigious or more certain, than Phyficks, Ethicks, and Politirk; but Thefe are cMathematicks, as much as That; and may be as clearly Demonfitated. (He hath fhewed us, How.)
He is of opinion, pag. 7. that Arithmerick, being derived from aedemis, oughr not to treat of any thing but true Numbers, (like as Geomerry, being derived from $\boldsymbol{\gamma}^{\tilde{n}}$,ought not to treat of any thing but Earth :) That Numbers, are all contained in a feries, beginning from $O_{n i}$, and increafing by $O_{\text {ne, }}$ infiwitely continued, P . 8. And $\mathrm{I}, 2,3,4$. \&c. are numerorum cifra, p .31 . Yet that O ne is no namber (becaule, not found in that feries:) bur $\frac{2}{4}$ is ; (becaufe it is there to be fena, numserus enim kallus eft gui non eft in progreffoxis hujus Arithmetica Serie, 1, 2, 3, \&c. p. 97.) That there be no mumbers but Integers; and yet that Fractions are Numbers proverly So called; P.31. But Surd Numbers chere are none, All are Effable, P. 7, 8, 97. That I take the Original of Number, to be from a Compogition of Unites; Bur it jecms (faies Thomais) nay 'tis moff certain (faies Hobs) that $\varepsilon_{\text {yclide con- }}$ trarywife takes it to be from Divifoon of an Integer; p.7.I I.
 unde of Unites.) But, why fo Certain? Becauré(he tels us p.u1.) in
 defigned by Coxtixned Lines, but, in the three next, Numbers by Prickt-Limes, that is Lines.cut inpieces. ('Tis,well he made ufe of Claviss his Latine Edition; for had he confulted the Greek Edition of Euclide, this goodly Argument had been loft, for there Nrumbers are defigried by Continued lines, as well as other Quantities.) But how (hould we have known (had noc Mr Hobs told us) That ,.... doch more reprefe!

Line cut into Six pieces, than, Six Points fet in a Row?
He is not pleated $p .28 . \&$ c. that 1 take $O_{n e}$, to be Number. (Had I faid, it were not; it's like he would have faid; It is.) But why not? Becaufe One is not Many. (True And $T_{\text {woo }}$ is but a Few.) But One, may tell, How meny, al well as Two. (And if by Nwimber, we mean, What anfiver to How Many : as by Quantity, he faies, p. 10. is meant What anfivers to Hows Much: One is as much Numbdr as Tipo.), But Eaclide; he raies, makes Number no b, $\mu o v i \delta \omega y \operatorname{man} \theta \theta$, and nañ θ G- Gignifies plura ; (Somerimes it doch : but I think Euclide meant it of, What tells, Hot many.) But why doch he tell us of Ewclide ? For p. 30^{i} he would not have us fo Ignorant or A .bfurd, as to thinit that it is the CMathematisians Work, to decermine mbat that will call Number:'Tis the Vulgar impofe Names.(It feems, hi knows well the ufe of aDefinition.) Why did he nor rell whit his $N u r \int e$, (as p. 61.) not what ε uclide, calls Number

Nor dorh he like (p. 7, 31, 66,98, at alibi) that 1 den Frositions, to be (in Euclide's fenfe) True Numbers. (l) feems t is not a Number; but $\frac{1}{2}$ is; becaufe that is not
 yea an Integer: becaufe Three Quartors is as properly Number as Three Men ; (and why nor alfo, what he denies $3 \sqrt{2}$, that is $\sqrt{18}:$ For Three Roots, is as much a Numb, alfo as Thres Men:) True. Three is in each place an Intege Number; but Quarters, Men, Roots, are the Numeratel not the Numbers. Yes; he fays; Howimes, is a Number. (True: The Plural. And Home, the Singular.) But in Homines, uopásuy nañf G ? and Homo μ ord's? Or doth he think (for I fuppofe he bath heard of that diftinction) thate Euclide was calking of Nwimerus Numeratus, and not of Nomerns Numerans?

But when all's done ; Mr Hobs is not \{o Ignorant (un' leis he be very much So) as not to know (whan ever he lift to fay to the contrary) that Euclide under the Name of N_{3} wisber, doth (very oft) comprebend a Unite ; but not a Eralli-
on. If he doubt it; let him confult Lib.7. def. 3, 16,21,22. prop. 19, 24, 35. Lib. 9. prop. 3, 16, 17, 18, 19. For is there places (and a multitude of others) if an Unite be not taken for a Number, and a Fraction for no N umber; Euclide's propolitions will agree like fome of Mr Hobs's. Though it be as true, that, in fome ocher places, Unite is contradiftinguilhed to Number. For, the truch 1s, Eaclide, in this, is not conftant to himfelf; but under the word Number doth fometime include an Unite, fomerimes the dorh not. Like as orber Marhematicians, fome do, fome do not, and fometimes they do, fometimes they do nor. 'Twas therefore lawful, and convenient, for me, to define (faving the authority of Mr Hobs's Nurfe) in what fenfe I wintended to ufe the word Number, fo as to include an Units. I had taken norice, that of Quantities (the peculiar Subject of Mathemaricks,) there were two Sorts; Contianed, and Difarete. The one faies How $M_{w c h}$, the other Hew Many. I hat, to be Meafured; This, to be Numbred. This, of Arithsuctical confideration; That, of Grombetrical; (and is exercifed principally about Lines, Superficies, and imsolides.) That Time, Piace, Motion, Weight, \&cc. doct not fill under any Confideration Mathemarical, other than shofe two ; but did fall under this or that of them according as they were confidered cither capable of ©Meafwor (bow Much,) or of Number (how Many.) That Geomerry wand Arithmerick (called Pure Matbonsaricks,)were Scienmos properly fo called, according as the Word is afed in the Schools,) That, of cragnitwde; This, of Number ; abecaufe there are Subjectums, Principia, O' Affediones, and thefe Affections Demomfirated of their Subjects. (Which, You know, are the Characters of Science as that word is ufed in the Schools: If Mr Hobs by Scierce, mean fomething elle; we have nothing to do with it.) That other ; whether Arts or Sorences, called Mixt Matbomatickl, are fo far Matbomiatical, as they doe contain fomewhat eicher Aritbwstigal or Geometrical. What harth

He firgt faies that I do not (fo pag. 10.) he then faies that I do (fo pag. I I.) call Speech, Difcrete Quantity. (One of them mult needs be true ; eitber I do, or do nor.) He finds fault (p. 10.) with Geometers (all at once) that Never , ane had yet defined Quantity. With the Barbarifm of Schools, even thofe of the Ancients; for calling Quanta what he would have called Tasta. (But why doch he not alfo, elegantly, fay Tantitas, for their Quantitas?) With E_{u-i} clide, for his unskilfull Definition of One. p. 27. 53. With Arifotle, for calling Speech, Quantity, and, Difcrete. P. I I, 12, 1 3. What Difcrete fignifies, Thomas doth nor know, till Hobs informs him that it fignifies broken or cut afunder; but that Cutting or Breaking it, doth not alter the Quantity: And he Wonders that Ariforle Chould talk of Quantity Difcrete. (It feems, with him, 'ris all one ro fay, that Tivo Mice are as Mush as two Mountains ; and to fay, They are as Many.) He asks twherher Ration (proportion) be 2 Number, or a Line, \&xc ? Whether (ontinued, or Difcrete quantity? (Neither. But, an Affection of either.) He believes that, If Moral and Civil Dottrine had by the Ancients been Densonftrated (as of late by Mr Hobs) it moould bave been called Mathematicks. He will not allow. p. 19. that we are taught in Arithmetick, that twice two is four; or that it can be Demonftrated. Nor, thar Afronomy reach eth us, the Inclination of the Zodiack and Eqquator: Nor; that there can be any Mixe Matbemsaticks; (that a Tractate on any Subjest, can handle, therein, fomewhat that is Mathematical, and fomewhat that is hor.)

When I give two Definitions of Geomerry (one from the Subject, the orher from the \mathcal{E} nd,) he doth nor like either. p. 18, 19. Noc the firtt (Scientia Magnitudinis quatensu neenfurabilis,) for twoReafons, firl, becaafe Magnitwdo is not a Propofition, and therefore cannot be known: For prater alicujus Dicti veryitatems nibil Sciri dicisur ; itagut vif_ Magnuns lit Propofitio, fciri mon poteft. Next he takes utenus Menfurabiis, to be redundant ; becaufe it is not
poffible, of a Magnitude, to confider anj thing but this owely, That it mas) be meafured. (You may think, perhaps, that I abufe him, in forming thefe Objections: But indeed I do not. The Objections are his own ; and I have delivered them in their full Atrength.)

For, it feems,(when Pbyfiology is defined Scientia Corporis naturalis gwatenus mobilis,) that (orpus naturale is a Propoficion : And when Geomerry is by himfelf defined, Scientia determinandi maguitudines, and Scientia per quam cegnofcimus magnitx dinum inter fe ratioses; though Magnitudo be not a Propofition, jer Determinatio magnitudinis, and Rationes Magnitudinis, are Propofitions, and may be Known. (But, now I remember my felf, I thould not have faid; It feems; for in faying videtur, he faies, I do profeffe my Ignorance, that I do not know whether it be fo or no.)

Nor doth the Other fatisfy, where Geometry is defined Scientia bene menfurandi. For, (befide that menfurandi, is not apropofition) I Chould have faid Magnitadines deternsinandi (as he doth p.17.) which is not the fame with menfurandi, (for then my definition had been good as well as his.) And yet (as we heard but now) it is not polfible, of cliagnitua'e to confider any thing but this onely, That it may be Neeafured: №t fo much as, Whether it have or have not a Being ? or Exiffence? Whether it be $\varepsilon_{n s,}$ or Modss Entis ? Wherher Subfeance, or Accident, or what elfe? Wherher it have, or have not a Subject, and what that is? Wherher ir be Really diftinct from Matter, and astually feparable from it, as the Papifts; or be not, as others hold? Whether ir can, or cannot, be Altered!; the Matter remaining the fame, by Rarefaction or Condenfation? (Of which he dorh fo ofeen take upon him to tell me, though I do not remember that I have yet told him, Whar my Opimion is.) Wherher Magnitude be peculiar to Bodies, or belong to Spirits alfo? With the like Inquiries. Which if they fignifie any more than this, (Whether Magnirude may be mealured?)they cannot pafibly(byMr Hobs) be Comfdered. Which is theR ea-

He is not pieafed ($p_{0} 19,20$.) when I fay, (and tell. him, in whatfenfe, that Punctum oft Priscipium Magnitwdinis. He thinks I mean (at lealt he would have me, that it is Principiwm Gcometria; but, That fuch Principles fhould, be propofitions.(As if, in Naturall Philofophy, when Materin, Forma, © Privatio, are faid to be triaP Principia; the mean, ing were, that they are tbree Propofitions; and that they are Principia Phyfiologia, not Corporis Naturalis: and the Afi fections there handled, Motus, Calor, Color, ofc. are affectid oses Phyfiolog ia, not Corporis Natwralis.) It feems, when 'cis? faid, that, inSciences,there are Subjectums, Principia, er Affecti. ones, he thinks'tis intended of Principles and Afffections of the Science, not of the Subject. He may learn hereafter, that they
 ones,meaning that Nateria, Forma, © Privatio, are principing Corporis Naturalis, not Physiologia;and that Metm, Calon Ơc. are affectiones Corporis, y1ot Affectiones Phyfologia: And have been fo undertiood hitherto, by All, bur Mr. Hobs.

He is confirmed in his opinion (p.21.) that Puntlum is; Corpus ; becaufe it may be Moved. Nov Nothing can be moved but Body.

He doth not allow that Extenfion, oi pofatio partimm ex. tra partes, is the formalis ratio magnitsdimis, or a Primciple from whence the Affections proceed: Becaufe there art Scholaftick' Barbarous words. As likewife that of Primwm gnod fic, and Ultimsums quod non.

He allowes not (p.22.27) Mine, or Ariftotles, Definitions of Demmonstration; Nor, that fome Demonftrations are Oftenfive, (proving, direetly, thar It is fo;) orhers Doducing to an Abfurdity, (proving, the contrary to bc impofible:)
 dioft, (hewing Why-ir is fo.) But will have all to be Oftenfive, and $\tilde{\pi}$ ditcra: For, (Nefcimus Quod res ita oft, nifs (ciamss, Propter quid ine oft, Ir is not poffible to know That a thing is, unleffe we know Wby, or How it comes to be \{o. (As if is tivere impoffible to know, That Ms. Hobs
hath made a Book, unleffe we know Propter quid: Or, $\mathrm{Tha}^{\text { }}$ there is fuch a thing as London Bridge, unleffe we know, Who made it, and Hown.) And, That All good Syllogifmes are fuch; For the Alfent to the Premijes, is the Camfe Why, we Affent to the Conclution. (As if to fay, the Canfe of the Conslufion, or of it's Truth, were the faine as, the canfe of our Affent: And becaufe our Ocular Infpection is the Conse why we Know there is a Biidge, it were allo the Caufe why T here is fuch a Bridge ar London.)

In fumme, He would have All Science to be Mathemsticks; All Quantity, Magnitude; All Syllogi(mos (or number of Syllogifmes,) Demonfirations ; All Demonstrations, to be qư flóts. Which whether it be to find faule with $M a$ thematicks, or CModers, or CMise ; or racher with Logicks, and Ancient, and allowed by A. $I l$ (but Mr. Hobs;) I leave to Your Jüdgement: and, whether it need a Fefuration.

His fecond Dialogue (excepring the t:vo firf Pages; where he rells us That he doth nor like fome Erymologies; and, That I have skill in Decyphering ; for which, he faich, Thuarus thought fit to commend V seta;) is fpent in Correding another peice of (tiodiern) Mathematicks, called Euclide's Elements. The Refult of which amounts to this, That Thomas and Hobs doe both agree, that Thomas Hobs's Elements are more accurare then Euclide's. There is fome hopes therefore, that when Mr Hobs hath been dead as long as Euclide, his Elements may be in as good requeft: though in his life time(he tells us) he cannor hope to fe it.But about this I thall not trouble You here. What in it may concern my felf, it's like, we fhall neet again. For he is not ufually forparing of his Notions, as to ler us hear them bur once.

In his Third Dialogue, I find him fomewhat at a loffe, for matter : of difcourfe. He can hardly pick up in Twexty Chapters or more of Mine, fo much ro carp ar, as will furnith difcourfe for One Dialogue. For befides his generall Accufarions, That ti: litrle worth, (in his

Judgement ;) That fomething might have been left out, or was known before, or fome what put in that is not; (to which, I fuppofe, you do not expect I fhould make Anfiwer:) Or, That, (where I undertake to give account of the Ordinary Waies of Operation, this is O'rdinary; of (where I rell what is Mr Oughtreds rule,) this is in Oughtred; (iwhich are very Trne, but no Faults:) Tis little elfe he hath to fay, and to as little purpofe. Such α this.

He defires to know, p. 57, 58. Why I diftinguifh Numbers thus 2, 468,013, 579, into Periods of 7 hra places, (according to the Compuration of the Latines, and of Modern Nations, who reckon by Thoufands;) and no thus 24, 6801, 3 579. into Periods of four places, accord ing to the G recks Computation, who reckon by Myriades! (The Reafon's plain ; Recaure I wrote in Latime, not in Greek: And'tis Hodiern Mathematicks, nor, for the daies of Old, that I was reaching.) And, why I write Decimal Fractions ithus 3579, 753. like $M_{r} O_{u g h t r e d ? ~(f o r, ~ I ~ f u p-~}^{\text {- }}$ pole he did not purpofely falfify, when he lefe out the note of Separation to make his Reader believe I had rittenit 3579753.$)$ And 'tis, becaufe they be Decimal Frations.

Then, Thomas cannot underftand, till Hobs teach him, (p. 59.) Thar, one quadruple quaternion, twoo fingle quata. nions, and tbree Unites; or, fonr times four, twice four, and three, do make twent y feven. But he doth reach him moreover, p. 6o. (what You and I cannot underftand yet, That 3 ad 27 funt in propartione 3 ad 9 duplicata. But, How is it poffible that Analy is can be performed by Algebra? When Thomas faies, He cannot imagine; Hobs Swears, Nor be neither. p. 6 . (He doth not know that he who Refolves an E Equation, doth 'A varíav.)

In the men while, he would have it believed, p. 61 . That I have fomewhere faid, That All the Ancients were ignorant of Algebra. But is much pleafed, that I compare a $P_{\text {oint }}$ in Geonerry, with a Ciphre in Arithmetick (as
this hath mibil Multitudixis ; fo that nibil Magnitudinis;) For now he thinks'tis Manifelt, that I Say, A Point is nothing. (For, fince it is, with $\mathrm{Mr} H o b_{s}$, nor conceivable for any thing to be, which is not Body; it mult be as impoffible, for a Point to be, if it be not Great. Fut, a Line or Body may have a Middle, though that Middle have no Bigneffe. Situm babot, Magnitudinem non babet. There may be $u b i$, where there is not Quantum.)
He doth not believe, that a G cometer, (to prove that \mathcal{A} Line of Two foot, added to a Line of T moo foot, makes a Line of Four foot,) dorh, our of Aruthmetick, make ufe of this, Becaufe Two and Twoo, make Four: For this, he faich is nothing of Arithmetick; His Nurfe taught it him. He believes (he tells it us here a fecond time, as a thing of great moment, pag. 51 . having told us once ar left before p. 1 5.) hat An drithesetician never Lid, nor Ought to demonflrate; That Two and Troo, make Four; For 'tis (he tels us p. I 5.) not Pofible to be done. (Vide, quafo, hominis regligertiam, doceri dicentis in Arithmetica, Bis Duo efficere Quatsor. Si doceatur hos in Arithometica, etiam in Arithmetica demonftratur. Qxis hoc unquam demonftravit, aut demonftrare conatrus eft, aus ex Prixipiis Arithmeticorum nunc pofitis demonfirare potef??) Weltry. That 2 is equal to $1+1$; and 4 equal to $1+1+1+1$; he allows to be Definitions (p.67.) Therefore fay I, $2 \dagger_{2}$, is sgual to $\overline{1+1}+\overline{1+1}$, (becaufee Equalia aqualibus addita faciint agualia;) But, by his Definition $1+I+T+1$, are equal to ts therefore' $2+2$ are equal to 4 ; (becaufe, Qua funt cidem
 Poffible therefore to Densonftrate, That Trpo and Troo, make Four. And, which is more, (though Mr Hobs cannot think it poffible) without the help of Geometry.
The ufe of Species, he tells us, (p.62, 63.) is neither Needful, no: is Shorter than Words at length, nor is it Perfpicuous: For when he meets with Denisonftrations fo mitten, He hath not the Patience to Underftand them. Is may befo.

Then，p．65，66．to enform Thomas，what is Apatyfs， Hobs gives two Examples；one about Angles 3 the ocher about Numbers；and then both conclude，That there is indeed a going ferward and backward，but what of it is Amalyfis，they do nor underftand．Onely this they do borh underitand，That there are not Any，Arithmetical Pro－ blems，which it is Poffitle（for Mir Hobs）to find out，withows making ufe of Geometry．There are Miftakes good fore in the procels of thofe two Examples，but I do not think meer to take particular notice of them ；becaure it＇s poffible divers of them may be the Printers faults；and，becaufe I would not difcourage any who may hope to learn from thence， What is Analyfis．

Only p．66．lin，I．I do not take it to be a good confe－ quence，that Becaufe AA＋16A＝128，therefore 16tAA． $\sqrt{ } 128$ ．A．are in continual proportion．（Any mo：e than！ did before take it to be a truth，pag．60， Hin ． 9 ，that the p $\mathrm{p}^{\text {．}}$ portion of 3 to 27 is duplicate of 3 to 9 ．Though it be the foundation of what he calls there a Demsonfiration．No： pag．67．lin．4．that $2 Q^{+}{ }_{3} R$ is cquivalent to ${ }_{2 R} t_{2}^{2}$ ．（though he would have it thought that I had faid fo as well as he；） but rather $\frac{2 \mathrm{Q}_{3} \mathrm{E}}{2 \mathrm{R}} \mathrm{xquivalent} \mathrm{to} \mathrm{Rt⿳⺈⿴囗十一}$ ．And p．69．1．is To find a Number which，to the Number given 6，ghall berf proportion as 4 to 5 ；the Analogifme fhould not have been thus ordered $4 \cdot 5:: 6.7^{\frac{1}{8}}$ ，（but thus rather $5 \cdot 44: 6.6 .4^{\frac{4}{9}}$ ） －Tis fond to think that $7 \frac{1}{2}$（being greater than 6）can bers to 6 ，the proporion of 4 to 5 ．

When I ray，To Multiply a number（Integer or Fraction） is to find anotber which fhall be to it in a proportiongiven．He asks， p ．69．If the Number given be 6，and the proportion 4 to 5 ；by what muft we multiplic the Number given？I aniver；by $\frac{4}{6}$ ，（Not，as he doth，by ${ }_{4}$ ．）

He faies， 1 fuppofe the Multiplier to be Given，（Yes；the Exponent of the Proporcion．）and，tbat it is tbe Mwlitple
of an Unite. Not alwayes. 'Tis fometimes a Fraction: As in the Cafe propofed.
He takes notice, p. 68. that, (amongft the operations of Integers, I I do not teach to Adde, Subduct , Multiply, ana Divide Surd Rootes.(True.I did nor think it there Proper.) This defeet Mr. Hobs p. 70. ofc. will undertake to fupply. How good he is at this work,we maty have occafion to confider hereafter. But at prefent, wee'l take notice of a Rule or two, to judge of his skill by.
Thomas defires, pag. $7^{\text {I. }}$ a solution of this Probleme. Multiplica numerum Radicum per numerum Radicum. Exmplicaufa. Sint 8 Rg. mumeri 9, multiplicaxde in 3 Rg. numeri 4. Which when Hobs had refolved to his full fatisfaction; Thomas proceeds pag. 72. to propore further. Manifefta bac funt. sed fiplures radices quadratice, puta 6 Red. numerri. 4, ducenda funt in plures radices, puta in 4 Radices numeri g. Quid faciendum? And Hobs applyes himedf to give a Rule for the folving of this Problem alfo. Now I hould defire your Information, whar is the Difference berween Numserus radicum in the former Problem, and Plures radices in the latter. Or, (if thefe be the fame) what then is the Difference between thefe two Problems. Mean while, weel confider another.
Divide a number of Square Rootes, by a number of fquare Roots. As for example, 6 Rootes of the number 36, by 3 Rootes of the number 9 .
The intended $6 \sqrt{36}=\sqrt{1} 296=\sqrt{2}:\left(\frac{1296}{36}=\right) 36:=6$
But he thus miftakes it.
7 be Rule is this. Let each Number of Rootes be multiplica iuto that Root, and the Product be divided by the Product (No; but, the fquare of the product by the Squäre of the Product:) and the Root of the Quotient is the $Q_{\text {woticnt }}$ defired Let's fee the Application of this Rule. Sixce therefor 6 Rootes of the number 36 , is the Root of the number 216
(Noe; bure, of the number 1296 ; and 2 Rootes of ths number 9 , is the Root of the number 36. (True.) cM.altiply $216, b y$, that is, by 2 Roots of the number 9, robich makes i296; (True, it doth fo make: But what direction is there in the Rule, for this Multiplication ? that the product of the Roor mulriplied into its number, thould be multiplied into the other number of Roores? And, had the former multiplication been true, this would have fpoiled the work : bur that being falle, this is brought in is botch to make amends for it:) Tben dividing 1296 by $3 h_{1}$ $6 \sqrt{2} 6$
the $\dot{Q}_{\text {sotient }}$ is 36 ; whofe Root is $6=\frac{6 \sqrt{2}}{2 \sqrt{9}}$.
You fee the Refult is right ; (For this he knew before hand, that 6 muft be the Number fought;) But how to come at this number 6 he knew not : For having firf miltaker ' $\sqrt{216}$ (for $\sqrt{1296}$) as equall to $6 \sqrt{ } 36$; if he fhould here yone on (as bis Rule, corrected, doth require) to divide 216 by 36, the Quotient would be 6, (not 36, as hé ex. pedted, and the Root of that Quorient (not 6, but) $\sqrt{6}$: which he fav was nor righe, (For $6 \sqrt{3} 6$, that is 6 times 6 ; divided by $2 \boldsymbol{*} 9$, that is 6 , mult needs be equall to 6 .) And therefore to help the matter; feeing that not 216 , but 1296, mult (by 3^{5}) be divided to make the quotient 36 ; and fiading that by multiplying 216 by $2 \sqrt{9}$, thax is by 6., would make it 1296 ; he dorh, withour any fcruplr take that, (though his rule fay nothing of any fuch thino:) that is, Tinker-like ('tis a Metaphor of his own,) he maks two holes inftead of fopping one.

But let's fee his Demonfration (for that he undertake -alfo.) It is thus Demonftrated. Suppofs AA $=36$; There fore $6 \sqrt{ } A A=6 A$. Suppefa alfo $\rho=B B ;$ Therefora. $2 \sqrt{B B}=2 B$. And $\frac{6 A}{2 B}=6$. Whecher he did intend $b y$ this to demonßtrate his Rula ; or to Eemonfrate his Example; Iivill nor inquire: Nor, How well he hath per-
formed either. I fhall only obferve, That he doth (where he thinks he can) endéeavour to Demonftrate by symbolls. (And therefore, That the Reaton why Mr. Hobs doth not love Spmbolls; is becaufe the Fox did not love Grapes.) But I doe not wonder (unleffe he knew bow to tiferhem better) that he chinks Demonfrations by'Symbolls, not to be Perficuors.
Wee'l try one Rule more. Thomas asketh him, \boldsymbol{p}_{0} 73. How is a Square Root of a ron-quadrate number fubrrated from amother Sgmarg Root of a non-guadrat number? And Hobs aniwers thus. If thofe Roots be commenfurable (but how we hall know whether they be or no, he doth not tell us) it is done, faith he, by this Rule. Divide each of the mumbers by the greateft common neafure of both. (Perhaps he thinks, that the rwo Numbers having a common meafure, is a fign fufficient that the Roores are commenfurable; (for he doth not intimate any other:) But that is a great mitake: for $\sqrt{ } 9$, and $\sqrt{ } 15$ are nor commenfurable, though 9 , and 15 , have a common meafure. But wee'l goe on.) Then divide the Root of the greater number, in fuch proportion as the Root of the Quotient bath to the Root of the Quotient. (But when it is thus divided, which of thele parts, or whether any of them, be the Remainder fought, he doth not tellus. His Example perhaps may inform us better. Let's fee that.) As for Example. Suppofe $\sqrt{ } 20$ to be \int nbducted from $\sqrt{ } 45$. Divide 45 and 20 b.y their greateft common meafure 5: the Quotients are 9 , and 4 ; and their Roots 3 , and 2. (True.) Divide therefore $\sqrt{ } 45$ according to the propertion of 3 to 2 , and the leffer fegment will be $\sqrt{ } 20$. (I doubt it. But What's next.) and fram Hence is Known, the Refidse to 445 . Towhon is this Refidue known, by his Operation, more then it was at firt? To me I am fure it is not;nor, I fuppofe, to You: What fayes Thomas? doth Ee know it? No: For he thus objects, But for as much as $\sqrt{ } 45$ is not a number, it cannot be divided accurately according to the proporlion of 3 to 2 , (yes it may,) I defire therofore, gaith he, for granted that an Apotome, mult needes be ar left the Roor of a Number.) Well; Bur dorh he fatisfie this \{cruple of Thomas? Or tell him how he thall know what the Kemainder is ; or, of what Number it is a Root? Not a word. (Onely he tells him, that there is A nother mechod, ip Oughtred, which perhaps may inform him, what this Method of his cannot.)

This being all therefore that his Rule can doe, (for you have it verbatim,) let us fee what that amounts to.

And, firlt, (fuppofing the whole to be true and accurare as is is delivered, yet) it amounts bur to thus much, That if from $\sqrt{ } 45$ you would take $\sqrt{20}$, there is in $\sqrt{ } 45^{\text {a part, }}$ equall to $\sqrt{ } 20$, which if youtake away, the reft is the Remainder: Or, if from $\sqrt{ } 45$ you take $\sqrt{ } 20$, the Remainder is, $\sqrt{ } 45$ manting $\sqrt{ } 20$. (which he might as well have fid at firft, without all this ceremony; and, which doth no more concern Rootes Commenfurable, to which hepretends to fit his Rule, than thofe that are molt of all Incommenfurable; for even of thefe it is as true, I hat, if from One you take the Other, the Remainder is, All but what is taken away.) But how that Aporome, $\sqrt{ } 45$ wanting $\sqrt{ } 20$, may be at once expreffed, he doth not tell us; nor, of what one number it is a Roor. That it is the root of Come Number, he tales for granted; (And indeed in this cafe it is fo,but it fhould havebeen proved; For, of Apotomes properly fo called, it is not true;) But he cannot tell, it feemes, of what numberit is a Root.

Next ', it was a Mißtake in Thomas's Objection, (which Hobs ought to have Rectified,) that, $\sqrt{ } 45$ cannot be accud rately divided according to the Rate of 3 to 2. For $\sqrt{ } 45$, being equall to $3 \sqrt{ } 5$, if for the grearer part be caken $\frac{5}{5} \sqrt{ } 5$ (or $\sqrt{\frac{11}{5}}$,) and for the leffe part ${ }_{2}^{6} \sqrt{ } 5$ (or $\sqrt{\frac{16}{5}}$,) it is accurately divided at the rate of 3 to 2 .

But, Thirdly, 'ris as great a miltake of Hobs (y et Thossas rwallofys it) when he faves, that, of $\sqrt{ } 45$ divided at the
rate of 3 to 2 , the leffer fegment is $\sqrt{20}$: whereas (befide that $\sqrt{ } 20$ is more than half of $\sqrt{ } 45$, and fo cannot be the leffer fegment,) the leffer fegment of $\sqrt{ }$ 45, fo divided, is $\sqrt{ } \frac{16}{5}$, (as was faid before) not $\sqrt{ } 20$.
He fhould rather have divided $\sqrt{ } 45$, that is $3 \sqrt{ } 5$, at the rate of 2 to 1 . And then $\sqrt{ } 20$, that is $2 \sqrt{5}$, being the greater fegment, the Remainder is $5 ;$, would be the lefier.
I will not give You the trouble of examiting more of his Rules. Onely, becaufe (as we faid) when his own Rule (which we laft examined) did nor fucceed, he refers to another Method of Mr Oughtred, (who, from $\sqrt{1} 47$, fubducting $\sqrt{12}$, finds the remainaier to be $\sqrt{ } 75 ;$ and to $\sqrt{147}$, adding $\sqrt{ } 12$, the Summe to be $\sqrt{243}$.) which Mr Hobs undertakes to demonftrate for him, p. 74. I hall give you a little account of his demonftration. (That you may lee thow much better he is at Demonitrating a good Rule of Oughtreds, than a bad one of his own:) Ic begins thus. Quod datum off fumo,,radices numerorum 147 © 12 effecommenfurabiles. Sunt ergo eedem radices numerorum quadrator \tilde{n}.scc. Where I delire You to confider, firf, Whe thei this be a gcod confequence; becaufe $\sqrt{ } 147$ and $\sqrt{\prime} 12$ are commenfurable, they are therefore the Roots of Quadrate numbers; (as if no Quadratick Roots of non-quadratick Numbers could be commenfurable :) and then, Whether the thing inferred be true, that $\sqrt{1} 47 \div \sqrt{12}$ be the Roots of $Q_{\text {uadrate }}$ Numbers, that is, whether 147 and 12 (whofe Roots they are) be Sguare Numbers. And theti (if You think that a Demonftration, which begins thus, be worth further examining) You may confider another Confequence, a little after, in there words, $v_{1} 147^{+} 12$ ad
 ad $R q 49+R g$ 4, ita eft $R g 243$ ad $R q$ 8r. (Becaufe the fumme of the numbers $147+12$, to the fumme of the numbers 4974 , is as ths number 243 to 81 . Therefore 35 the fumme of the Roors $\sqrt{147}+\sqrt{12}$, to the fumme of
the Roors $\sqrt{ } 0+\sqrt{4}$, fo is the Roor $\sqrt{ } 343$ to the Root $\sqrt{ } 81$.$) For if chac beagood confequence, Why mighr he$ not as. well inferre, Becaufe $149+10$ is to $49+4$, as 243 to 81, (for this is crue) Therefore alfo $\sqrt{149}+\sqrt{10}$, to $\sqrt{49}+\sqrt{4}$, is as $\sqrt{243}$ ta $\sqrt{ } 81$? And conlequently, Becauxs $1_{147}+1_{2}=149+10$, Therefore $\sqrt{1} 47+\sqrt{12}=\sqrt{1} 199+\sqrt{10}$? (Becturfe the fumpses of the numbers be equal, Therefore the fummes of ithe Rootsare alfo equal ?) And is not Ms, Oughrmed, think You, much obliged for this Dcmonftration? Bur I hall not crouble You furcher either with this Demonftration,or any more of Mr Hobs's Rules about Sumad Roots, A Talt is enough.

He'thinks, p. 75. That Geometria, and Geodefia, are words of the fame fignification; (and would not have them diftinguifhed:) For Etymolagy is a great Argument with him, in Mathematicks.

He takes norice pag. 76. That I had Gaid, Quantitus compared ought to be Honsogeneous. And he allows ir. Bur he doth not allo v me to fay, thic To compare Heterogeneous quanticies, would be the fame as to ask, Hon much of Timo rould be equal to a Line ? Becaufe he thinks himfelf coscerned: (as being wont to compare Time and Line:) And therefore takes fome pains to perivade Thoman, that, If Time and Lire be not Homogeneons Quamities, yer ar lek their Q nantities are Homsogemeous. And therefore he think fit to give notice, (and he doth it ever and anon) How Abfurdly the (Hodiern) Marhematicians, do (for want of Concrete Subffantives)make ufe of (the Abftracts) $Q u$ untity, and Magnitudr, (as $\varepsilon_{u c l i d e ~ d o t h ~ \mu i s y \theta), ~ f o r ~ C o u r r e t e s . ~}^{\text {en }}$ (He would haveus fay, Quants and Grents.)

And though You and I perhaps may think it is bur a nopourxita; and that it is not worth while to contend for mords when the me aning is underffood: You muft take heed You fay not fo; For when any fay thus, 'Tis, he tells us pag. 9, a certain Argument, that they do not underftand what they fay. And that "cis a very great miftake, to think,
that there. is any Difpustion other than dozanu xiv, or, Any Truth other thais the. Truth of Words. That it is absolutely Neceffary to reprehend whatever is not accuratifime dictum. That "is all one, mon Accurate, ${ }^{\circ}$ False dicere. (Yet of Eaclidr's Definition, p. 42. he faces, 'cis. True, bat not Accurate.) And thar, D_{c} vevitate re, niff Accuratifjumis eerbis conflate son poteff. And Thames doth often tell uss

Let us therefore learn (from this moo Accurate Speaker) w fork, 164 curatè, that is, (as he defines it, pay. 16.) profruits legui, that is vocabslis wt prodefinitts; but thole Definitions, he tels us mut be accurate \mathcal{D} definitions: And to define accurately (that is, prafinito Definite, as we heard but now) depends on the Underffanding of Words; (not, as others imagine, the Underitanding of Words on the Definitions; and, that where Words are already sufficiently Underfood, Definitions are needleffe; being intended by the Definer, onely to determine what he underttands by thole words :) And what by a Word is. Every pere Underfood, is the Accurate figmification of that Word, (For, That every Word, doth every where fignifie, fame one and the fame thing, is nor to be questioned.).
Not w he dock not fay, Thar Time and Line are Homogroom. : (forth sab. ur to fay that a Lithe is equal to a Time, pas. 77. though he have of r aid is heretofore.) Nor that the) be Quantities, (they are, he tells you, Quanta, but not, Abstracte, Quantities, P.76,77.) But, That their Quantities aroHomarremenis. And the like of Line and weight, p. 80. That Line and whinge are Heseragencows, is trice; But jat their Quantities may be Homogeneous. What therefore is the Quantity?

To this purpose he had cold us, in his Philosophy of Bodies, (capt in 2:) There be ore Dimenfions, Ling (or Lengib) Superficies, and Slide; (but in ep, \&e to which ho there refers, a Solid alone, one of the three, is aid to have three Dinemfions;) That suer of theft! the', if
determined, is Quantity : And therefore that Qumantity cansnot be otherwife defned than thus, Dimenfion determined.

Bur he dorh not here \{peak Accurately ; for he had nor, thic I find, any where pradefined what Dimenfion is. Bur you may perhaps gueffe ac his meaning, by a Definition he now gives us of a word in the fame form, (Dial.p. 21.) where he cells us that Extenfon, to Ppeak Properly;' is the Action of Stretching, and that 'tis Barbarous for the Schools to ufe it in another fenfe ; (though corp. cap. 8. himfels do fo ufe it conitantly.) And at that rate Dimenfon, muft fignifie the DAltion of Meafuring : And Quantity, that is, Determined Dimenfion, mult be, the Determined Attion of Menfuring. (But he is now to fpeak Accurately, nor Properly; and fo it may here fignifie fomewhat elfe than that Astion.)

Again, it was not Accurate, to define Quamtitie by Dimenfion, and reftrain Dimenfion to thofe three, (Line, Surface, and Solid ;) For (Dial. p. 10.) he affirms, Tempus, Locums, Motum, Pondus, non minus propric Quantitates dici, quam Linea, fuperficies, of Solidum: (I would not change the confruation, left I hould fpoite his Latine: it is an Elegance, for quam, not to couple like cafes:) And therefore at what rate thefe Three are called Quantities, thofe Four fould be fo called alio.

Neither was it Acourate, to call the firft of thofe three Dimenfions, Lie, or Length, (as if thefe words were Synonymous,) for he tells us now, pag. 77. Accurate loquentes, Lineame dicemus effe Longam, potius quam Lowgitudinem. (That, is a Concrete; this, an Abfract: and therefore not Line, but Length onely, hould there be'called Quantitic ; for Quavititic is an Abftrait.) And therefore, pag. 76. we are thus taught to fpeak Accurately: Ommid Quantitas (I accuraté loquendum eft) ant Longitudo eff, aut Superficies, aut Solidum : (Intead of Line, he faith Lengetb: for lime is a Concrece, and therefore noc Quantitic:
but Superficies, and Solide, remain as before; for there; it feems, are Abftrasts:) Tempus autem, o c Motus, es Vis, cateraǵs re's de quibus quari poteft Quante, funt, Quanticates babent (quibus quaute funt determinantur,) aliquas vel aliguam ex illis tribus, nimirum illasipfas quibus nsenfurantur: And that you may nor doubr, which of the three concerns Time in particular ; He tells you, that, Menfura Temporis of Linea (for by this time Line is got in again, though but now chrult out to make room for Length.) Yer he had told us, p. 47. That, What are Homogeneows, are meafured (eodem genere menfurx) by Homogencous meafures ; But, whit are Heterogeneous (diverfo geners menfurx) by Heterogeneous meafures: And cherefore, fince Time is confeffedly Hererogeneous to Line, the meafure of Time cannor be that of Line.
And, he had before this time thoughe fit to un-fay, what Was faid, pag. 13. Quantitas alia eft Corporum, ut Longitudo Corporis; alis Temperis, ut Lomgitudo Temporis; alia Motiss, ut Velocitas $\dot{\sim}$ r Pondus: For now Longitudo Temporis, is not alia, but eadems witb Longitudo Corporis. (The miftake was occafioned by the Latines diftinguifling between gram. Longum, and gram \mathcal{D} is: But when he confidered, that, in Englifh, they do both fignifie How Loxg; he was delivered from that Error.)
And what he had faid before (pag. in.) that Time, Place, \&c. are Quantitates non minus proprie dicte, guam Magnitudo ; is not now to take place: for though they be Quantitates proprie dicla, yet they are not Quantitates $A c_{-}$ curatè loquendo; For he faies (fi accurate loguendum) All quantity mult be one of thoie three; Length, Surface, or Solide. Which doth alfo Accurately agree (or difagree) With what he had faid pag. Io. Non funt ergo Longitudo, Superficies, \& Solidxm, Quantitates ipfa, fed Quanta; which Thowas chere tells him, is allo Accurate dictum.

And by this time You underftand what in Accurate pessh is to be called Quantity. Length, Swrface, and Solide,
(to Spéak, Accurately,) eitber be, or be not, Ouantities. Or racher They are, and they are vot, Quarrities in the Abfraci; every one of them..

If all this fatistie not; He tels us furcher,(Corp.cap.1 2.) That, All men,by Qxartity, do moderffand, that which is fitly anfwered to that queftion, concernirg asy thing what ever, How Much is ir? As for Example, How much, or How Great is Such a Length ? fuch a Journy? fuch a Field? Such a Bulk? Is not ficly anfiwered by faying indefinitely, eA Lewgth, A Surface, A folid: Bur, A Yard, A Mile, $A n$ Acre, A buybel. (And in like manner, How much Time? How much Weight? An Hour, A pound.\&cc.) And this he tells us(Dial. p. Io.) is the Definition of Quanticy: Quantitas-oft per quam,quarenti de qualibet re Quanta fit, apte refpondetwr. 1 will not ask him, what is the Antecedent to quam ? winether he mean Quantitas oft guantitas per quam; or whar orher Antecedenr is underfood; (though he move a lite queftion to Enclide, upon as little reafon, p. 42.) Nor will I quatel at the nord Quanta in the Definition of Quantitas ; (though pag. 27. he faies 'rwas unskilfully done of $\tilde{E}_{\text {uol }}$ lide to make ule of Unsm in the Definition of Unitas; and comdemns the Definition for naught upon that ae count, becaufe it is cognata vox; and, an Abfratit dath nothing at all confer to the wnderffarding of its Concrees, wer the Concrece to the Usederftanding of its cefbftract: And yes, in truth, Enclide, had not fo done, he onely made ufe of ev in the Definition, not of ivdme, but of $\mu \mathbf{\mu} \dot{\mathrm{b}} \mathrm{ac}$.) Nor will 1 preffe:co mow, whether that which thus Anfivers the Queftion, (A Mile, an Acre, \&cc.) be guastitios, and nor rather Quentmm, or, as he would chofe to fpeak, Tantwm? Wherher an Abftrait, or a Concrece? (for hitherro the great exception hath been, that Concretes have been called Quantity, when as Quantity is an efbftract.) Bur we'l take the Definition for becter for worfe, as we find in. And now you know the Accmrate fignification of the word Qunntity andwhat chat one throng is which it doth owory where Gignifie.

But what is meint by Homogomeons? Euclide having in : his Definition of noyo, Ratio, (def. 3.lib. 5.) told us
 That we may know what thofe are, he tells us (in a following Definition) that Homogeneows Magnitudes, or (which is allone) magnitudes which bave relation to one amother, are fuch as may cach of them be fo maltiplyed as to exceed the other.(For Euclides intent was not, as CMeibominumiltakes him, in his Dialegue of Proportion, pag. 85 . To enform us by that Definition, What Homogencous quantities have, and what have not, Ration one to anorher; as if fome had, and ochers had not: But To rell us twhat are thofe quantities be calls Homogencens. For that by Homogempous was meint fusb as had Ration one to anotber, was faid allready in the Definition of Ration : And what thole are that have fuch Ration, he derermines in that fubfequent definition). And this Definition Mr. Hobs allows, pag. 47, to be a good Defimition of Homogereous. Yer pag. 77 and 80 , be gives us anocker Definition of his o vn (perfectly his own, he borroved it from na man) Homogenea fust quorworm mensure impuporsar; congrusut; (Underftanding by Meafurc, as tie defines it, p.II. that, which beirg once orioftener taken, is coincidemt with the thing weafured.) Informing us, thereby, that Homogeneous is the fame with Commangurable. And cherefore 'twas vainly done of \mathcal{E} uclide, to make fuch adoe in his renth book, about Incommenforable Limes, (and 'tis no wonder therefore, that neither Thamas can underltand, nor Habs informe him, pag. 54. for what purpore Euclide wror it:) For Mr. Hobs hath told us ofren, That Linoe lineis fwne Homegeseas; and, now, that Hamagenea frue, guerum moni. uma congriwnt. 'Tis not poffible therefore that Lines can be Infommanserable.

Being chus accurately informed, what is Quantity, and what is Hamegerreonar; That the Quantities of Line and Time, or of Lime and rreight, are Honsogeneous; he further proves
 Time, or of Weight to Weight, may alfo be fet forth by two Lines. (Yes, Or by two Plaines, or tso Solids, or two other Homogereous quantities. For Rations be Honogeneous; though onie be of Lines, anocher of Solids, and a third of Weights.) But this, if it prove any thing, proves $A l$ Quantities to be Honsogeneous. And cherefore, that you may not doubt of his meaning, he rells you once for all, p. 81. The Quantity of any thing, to the Quantity of any other thing what foever, is t:omogeneous; And therefore the Quantities of Lines, Superficies, Solids, Time, CMotion', Force, Weight, Strength, Refiffance, are all Homogeneoss, though themfelves be Heterogeneous. And Thomas doch here applaud him as having faid clare of accuratiffime quod reseff. (And therefore of what was faid accurately before, of Three forts of Quantities, pag. 76. All Quantity, to Speak accurately, is either Length, or Surface, or Solide ; Time, Motion; andevery other Q nant, baving for its $Q_{\text {naxtity }}$ one of the fe T three; that of thems by which it is meafured: The two latter muft beblotted out; For now there is but One fort. Surface and Solide are no longer Quantities, but Heterogevicous things, Linea lixee, Saperficies fuperficiei, Solidum Solido, Homogenea funt; fed, altera alteris, Heterogerea, p. 8 I and cannor therefore be Qwantities, which are, All to All, Homoogeneows: You mult now read it, Omnis Qwantitas, fiaccurate loguen dume eft, Longitudo eft.). And therefore Euclide doth but triffe when he reftrains Ration to Homageneous magnitudes, (for there are no other;) and Defines thofe Homogencons Magnitudes to befuch, as that cach may be $\int 0$. multiplied as to become greater then the otber; (for All are Homogeneous, and therefore may fo be multiplied.) And therefore fince the Q uaptity of Time (an Hour) is Homogeneous to the Quantity of Line (a Yard) there mult fome Number of Houres be longer then a Yard; and, fome Nwmber of Yards, longer than an Howr. And therefore it is not improper ${ }^{n}$ ask, How many Hours long a Yard is? Or, How many Yards
long is an Hour 3 And (left you might think I abufe him, by making an odious Inference,) You shall have is in his own words,p.48. Habent rationem inter fe Menfura Longitudinis, Temporis, © Motus, © po ponnt multiplicate fe mutuo fuperare.
And yet after all this,pag. 110 . he tells us that the $Q_{\text {uan- }}$ tity of the Angle of Contact is Heterogeneous to the Quanitit of a Streighr-lined Angle. And char upon this ground; Becaufe the Meafure or Quantity of the one, is Arcus circuli; Bur, of the other (he faith) linea recta; which cannor comruere. (Yet heretofore he had often told us that $L i$ malinee, without confidering whecher Streight orCrooked, is Homogenea: And he muft not yet deny it; becaufe he is by and by to fquare the Circle, and give a Streight Line equall to a Circumference.) Nor doth he affirm only that Line to line may be Heterogeneous, buc alfo Number to number : for thus he tells us, Numerus numero, fi gue numerantur funt Homogenea, Homogeneus eft : aliogni, Heterogenews. So then, The Quantity of two Lines may be Homogeneous, or equall, to the Quantity of two Plains, but the Number of tivo Lines, is neither Ecquall, nor Homogeneous, to the Number of two P laises.
I fhould not have derained You fo long upon this Subjet, but that I thought it neceffary to give an Inftance of what I did before intimare, How poffible it is for Mr Hobs to Forger, or not Confider, at One time, what he hath written at Another. And, that you may fee how extreamly Corfufed his Notions are, even where he pretends to/peak efccurately. Yer hath he that opinion of his own Accurate /peaking ; that in one Dialogue (the firft of thefe fix, containing but 32 Pages,) he doth about 37 times (and how ofren in the reft, 1 did not think it worth the while to namber) eithet direstly Commend bimeself for (pecaking Accurately; or Reprehend others, as leffe Accurate then he; (bur ivith various cadencies, Accurate, Accurata, Ac-
 'xpifere, eorc.) befides his other Commendat: Refté,
omnino, certe, certiffine, exquifite, perfpicue, clare, clariff
 we meet with at every turn.

But if you ask me (as perhaps you may) How he chould have fpoken co fpeak Accuracely as be pretends : I fay firl, he fhould have fpoken Confiftently, (for'cis not at all accurate, fo groffely to contradiet himfelf.) Next, 'Tis confels'd, that a Qrantity, and a Magnitude ; are, as to the Grammaticall form, Abftratts ; bur, in common ufe, dot paffe for Concrets (for want of Concrete Subltantives:) Nor is it an Hodiern or Modern Innovarion in Marhematicks fo to fpeak : but Euclide and ocher ancient G:eeks, did at the fame rate ufe uiselos, as the Latines doe Qrantites, and Magnitudo, for Concrets. And Verba valent ut Numsmi; wharfoever they were firft Coined for, they mult now pals at that value, which ure hath put upon them. Next, his Norion of Q wantitas in Abfiratio, is Heterogencous to this bufinefs, being a Metaphyficall, rather than a Mathemaricall confideration of it. The жoo'tas is not conlidered in Mathematicks, but the noos'r' 'Tis Meraphyficks not' Mathematicks that confider Abfract Formatitios of things. That confiders the Formality; This the Meafure; and 'tis not nooo mus, but the aood', we meafure. Then 'Iwas farre from Accurate to thrult out Linea (becaure a Concrete) to make room for Longitudo ; and, at the fame time, to keep in Superficies and Solidums, (which are as much Concretes as Lines :) He Thoild therefore, in accurate fpeech, have faid, either Lined, Superfisies; of Salidmen, or elfe Longitudo, eAmplitmdo, co Grandites, (either all Abltracts, or all Concrets;) and not as now Longitudo, Superficies, G̛ Solidsm. Next, 'ris a very great Negligence, when be doth fo much contend for Abfrafts only to be called Quantity ; to tell us, that not Eongitudo ofrc. are Quantities, but fomewhat elfe that aniweres to the Queftion Quantum ; which every one knows mult be a Concrotic: (and fuch, is that he gives for infance 10.tanta guamen ef ulina foc.)For, not Quantitas, but Tantí
aniwers to the Queftion Q antrü. And then, 'is very unacu- : race to define his Abftralt (Metaphyficall) Qiantity,p, 10. . Quanticus oft per quame quaretri de qualiber re Qunasta for, pre refponderwr; (For Quancity is neither per quam queritur ; nor per guam refpondetur.) He hould rarher have faid; Quantitas off itla Entis eAffectio, fociondum gram, gMenitur Quantess eft, $\dot{\sigma}$ refpondetur Tantum. ; or quaritur Quan, co refpondetur Tam. And in like manner, of the feverall kinds of Quantity; as Longitudo, Amplitudo, Grasdithe, Duraitio, ©ric.eft illa ensis Affectio, fecundü gram, qwaritur, Qum Longum, Quam Amplum, Quam Grande, Quams Dim, © c. ©̛ refpandetur Tam Longum, Tam Anplsm, Tam Grande, Tans Dis croc. Buc whecher or no, Tams Longum, and Tam Diu, be Homogeneous, any more then Tam Lonskm, and Tam Amplum, \&cc. I think, needs no very protound Intellect to determine. Byt if he leave his Metaphyficall тобizns, and fpeak of the Mathematicall mosory: Whether he mean thereby that which is meafurid or meafarable, (and call it Line, Surface, Solide, Tisse © c, or, which will here be much the fame; Longitude, Amplitude, Grandomr, Diration, tic;) Ormean, fone determined Portion thereof, (and call it the DeterminateDimenfon, the So much, orthat which tells How much; as a rard, an Acre, an Hoare, ن̛́c:) ' [will be either way equally Abfurd; to fay that a Line is Equall, or Homogeneoss to Tinse; or to fay that A Yard is Equall on Homsogeneous to an Hoar. Kut if (as finking men are ready to carch at any thing) by Quaxtity he will mean Proportion: and, in faying The Quantity of a Line is Homogeneous to the Quantity of time, he mean, TheProportion between two Lines, isHomogeneous to thePraportion between troo Times: He doth but trifle. For though it be true, that Rations or Proportions be Homrogeneous, how Heterogeneous foever the Termes of the one are co the Termes of the other: (And fo are Numbers alfo, though the things Numbred be Heterogeneous; however Mr. Hobs tell us the concrary: For Two Mountaines, are many, as Two Lines:) Yet this
is not at all to the purpofe. For we are now talking of the Quantity of a Line (which he tells us pag. 13, is Q mansitu. Abroluta,) not the Ration of two Lines, (which there he tells us is Relativa.) But he, by confounding the Abdalut with the Relative, and the Mathematical notion of Quantity with the cMetaphyfisal, (and skipping confuredfy from one to the other, withour a diftinct apprehenfion of either,) is fo bewildred, as that he knows not which way either to go back, or forward. And all this, our of a Periu. nacy to defend a former miftake, in comparing Lixe and Iinve as Homogeneous Qugntities.
I mult now beg your pardon for having deteined You fo long (for the Realon but now mentioned) about the bufinefs of Homogeneous Q nantities: And at the fame time crave leave(for the fame realon) to do the like upon the bufnefle of Ration, which is the Subject of his Fourth Dialogue, (be fides whit is to be gathered up out of former or follo: ${ }^{\text {a }}$. Dialogues to that purpofe.) And you muft give me leane to ufe the word Ration, though leffe Englifh, to avoid an Inconvenience otherwife unavoidable. For though the word Proportion, You may think, would do as well: Yet fince that, you knoiv, this word is ufed, by fome, for what Euclide calls $\lambda \dot{\theta} \boldsymbol{\theta} \boldsymbol{\theta}$, and, by orhers, for whar he calls a'vanoyía; I mult not ufe it in either fenfe. For if I Should ufe it in the former fenfe, Mr Hobs (as his mannt is) would be fure to take it in the latter, and difpute againft it at that rate ; if in the latter, he would take ity in the former, and difpute accordingly: (For, that be knows of no ocher D_{i} pputation than noppuaxia, You heard but now.) Nor mult I ufe the word Reafon; for, That he would interpret either for Canfe, or for Underftayding. And yet, even thus, I am not fecure. For were I writing, to Mr Hobs, I mult expect to be told that Ration is but a parbarous word (and nothing but Reafon mif-fpelled:)And, however, Reafon and Ration, being words of the fame Oririnal, (as much as dut: druos and dinncorior, or double and
duplicatr,) cannot (in Grammar) but fignift every where the fame thing. And therefore Ration muft teeds be interpreted of Underftanding. (For, that Rsafon doth, fometimes, fo fignifie, I cannot well deny.) But that Perfon of Honour to whom I am noiv freaking, being Intelligent at another rate, makes me fecure, that I fhall be neither not-underfood, nor mif-interpreted.
His Fourth Dialogue, therefore, being wholly ffent about the bufineffe of Rations, 1 thall to this place refer What I meer with in him, fcattered up and down, about that mater; that You may fee with how little of Reafon he mingecth this whole affair.
1 had faid that Homogeneom Quantities may be comparedeach to other, either as to their D ifference, or as to their Ration or Proportion. As 6 exceeds 3 , by 3. Or, is the doyble of three: The former faies, Quanto pluw; the later Quantuplums. But this $\mathrm{Mr} \operatorname{Hobs}(\mathrm{p} .77,114,8 \mathrm{cc}$.) cinnot Underitand. Quotuplum, he knows; but he thinks Quantuplimm and Tantuplums are not Latime; and he knows no how to pur them into Englifh. (If he had known the difference berween Aliguota pars, and Aliguanta pars; He might have known, that as Q notuplum is the Correlative to Piota pars; fo Quantuplum, to Quaxta pars. But whetherit be Latime; or,MrHobs know how to make it Englijh, is that which lam to neglect.) The former, I faid, is derermined by the Remainder in Subduction; The latter, by the $Q_{\text {xotient in }}$ Divifion. (And when Mr Hobs is in a pood mood, he can fay fo too ; as Leffob. p. 16. A.s the Ruotient gives sus the mea ure of the Dividend to the Divifor nGeometrical Proportion; So the Remainder afier Subfrallion the meafure of Proportign Aritpmetical.) Thus, if, the Antecedent being divided by the Confequent, the Qnotient be Tyio; we call it Double; if Three, Treble; if Four, Quadruple, \&cc. The Propoition taking its Denomination from the Quotient. (And this alfo $\mathrm{Mr} \mathrm{H}_{6} \mathrm{bs}_{5}$, When he thinks fit, can allow too,as (apocap. 1 3. א. I

2 ad 1 vocatur Dupla;con ad 1, Triplas: T hough at anochet sime as Leff $p \cdot 2$ s and 42 . he think is Abfurd and not Intel. ligible, co fay, ibe Prope of 2 ,te 1 ; or of 6 to 3 , is Donble.)

I had faid furcher, I hat as to the former comparifon, the Differtucí, or R Remainder, war ailsoays Homogemeows to the Qansities Compared; (if chere be Numbers; thar a Number: if thefe Lines; that a Line; \&c.) But as to tbe latter the Qmo-
 nentoun to N ninher;) For chough the Quamities compt red be Lines; Plaines, or the like; Yet fill the Quodient tran fit in genses iNunterofnsw.' (Which what ic means, becaufe Mr. Hobs fays he cannor underftand ; he may bein. fotmed that by germs nuwerofwow, I mean, what is ejuglem gentris. δ um ynnsero, or, as I had raid before, Howorgenemantim miro. For fo all Quotients are; if not true Naidiberr, yet ar left fuch Quantities as may be io multiplied is co exceq/ Number.) And whether we askHow many times zheDouble Line, or the DoubleNunber; containes theSingle, the Ono tient in both cafes is 2 . Whether Mr.Hobs (whem he under1tauds it) will allow this or not, I cannot tell. For though Dial.p.80.he allow that All Bations (Geometrical) be Howso geneons, yer pag.IIo. he will not allow that all N_{x} mabert So; which reemes to unfay the former. For if the $N_{\text {wis }}$ of twa Yards, be not Homogeneous to the Nwinher of two Actes; it may as well be doubted whether the Propemm 2 to 1 in Yards, be Homogeneoses to the Proportion of 2 to 1 in Acres. Efpecially when he hath rold us heretofore, Corp. cap. II: S.5, Confifit Ratio Antecedontis ad Compoquet in Differentia, boc eft, in en pwote majoris quariminous the Superater'; five in majoris (dempto minorv) Rofidsoo, mon aura fimpliciter; fodiut comparato fuiss attito relatorum : we Rat bintrii ad quinarines eft ternarins, guo quinkrias binurim fuperat, son Iampliciter fed quintenus cwas binitrio, vel quinat. comperasus. Now if Proporition confift, as he Jaith, in the R vaiinder, or that Part of the Greater whereby is exteeds th Ueffer; then the Proportion of \mathcal{A} Nwimer to mimber foul
be a Numbery, (as he there rells us, the proportion of the number 5 to the number 2 , is the number 3 , whereby 5 ex:eeds e ;f and che proportion of Live to line, mult be a Lime; (as fallows there Cloap, 12, 8.8. The prapontion of
 whichilse:Line:) therefore the Praporsios of mumber to nemmbr (being a number) camot be Homogeneous to the Pro portion of, Line to lise (which is a Line,) unleffe that \bar{V} umon burand this Line be Homogeneous. which wherber, Mra Hhbl will affirm, or mac, I am nor Solicirous.
iBue: M5, Hobs being thus ingaged, as you fee; in making Geomerricall Proportion, not only co depcoid on, or be efin muted by s but to comfift. ing, ute Refidue, ar that pars of the greater whereby it excoeds the lofer Quantity: Thinks himfelf obliged to reprozch ime, (rhough himseff, at you heard but nowr.com (ay fo when be pleare) for faying, that Proportion io robe eftimauted by the Reyotienty and that cherefore Equall Q Qarientr doe Xergme aquall Prapartioms. For in thus dbing, he Iayes, I make Propertion, to berin Quotiest a Nun-
 he doth bue reproach himelf, who'lays, it conffis in weare of tbe grantar gmaxity, shat is in a Lines a Number, a Salide, as whatever chas Abfolute-guantity is char is compared.) No, I doe nor make Propantions, a Quarient, ar an ub olowte Qumatry (thiac's but his inference, and a weak one.) I fay indeed that Proportiou depends nnaw: दhe Quorient; is determined by the: Quroient, effimanced by the Quocient, and demominasod by dhe Qubsianapootichar is is che Quocient.My Hotds are fulliand clear y (had nocthe; miad, as his man-
 mis nempequestiens Qfeendis rationems: Dividuined Diviförem

 Ulio ponder santinesimr;) Et proptorea, Whi Quetientes invicm
'Egyantur, ibi ion quaurtitates, in Eadim. Ratione conffitute inteliguitur. Qxippr Ratio ex Quooso effimatury; adteog \$ ex horum equalitate, equalitasillarmim. Cap. 2\%. Of which Mir. Hobs can make no orther fenfe, but this, Propertion, is a Qnotient. And whenl fay, Cap. 3 5.Nobis (gwi Ratiomes Superixs docuimus Quoto aftimandas) ad Ratiaum fove equalitatem five indentitatem probandam sufficere videtwry \sqrt{i} fuerit equalices five idemitru Quotormm: Mr. Hobs (according to his wonted ingenuity). pag. 93 . cites my words thus, © Equalitem ive Identitas Rationis, effe e Equalitus five Idemitas Qiotor $\begin{gathered}\text {. But fuch Falfifications are fo frequent with him }\end{gathered}$ (as if Hobbiann fides,were the fame with Punica) that 'twere endleffe ro nore them all ; "Tis enough to intimate ; That You are not aliways to take for my words, what Mr. Hbbs cites'as fuch. Whecher it be therefore I, or he, that make Rftion to be an Abfoluce Qmentity ; it is not hard to judge.

And (befides thax he thas makes Properitions to be H . rerogeneous) when he fays, It confifts in the Difference, "s compared wotth ate of the Relatives; As thus (Dial. p. 78) The difference between 4 and 2, is balf the Antecedent; and the difference between 2. and I, is baif the difference, $\left(\mathrm{N}_{\mathrm{O}}\right.$, but the whole difference) between the Antecedent and tbe Confe. guent : The Refult will be but this, The Proportion of the Astecedenn to the Confeguent, conffets in this, that the dijfereimet of the Antecedent and the Conseguerre, doth bear fuch a Propor tion to this or that of them: (as that it is half, or a thirdpart, ot the double, \&ec.) which is a Ledicrous' Defimition. For theProportion of the Difference io eitber Antecedent or Confequent, muf? be fuppoled to be as little undetfood, as the Proportion of the Antecedent to the Confequent; which was to be dofined.

And then whether it be more naturall to expreffe the Proportion of 6 to 3 , ((as Mr Hobs would have us) thus; That the Antecedent exceeds the Confegweme by aNumber equal to balf it folf, or, by a Nomber equal to the Confegremt; And that of 9 to 3 , thus; that the Antecedent exceeds the Confogmerst ", a Nwuber equall to two third pures of it folf jor, byan $N=$
her mbich is equall to the double of the Confequent, (which) is the beft of whar Mr. Hobs his Nocion cap reach to :) Or ro fay, 6 contaimes 3, Twice ; and 9 contimes 3, Thrice. I leave to any, that is but well awake, to judge.
But I have faid formerly ; That Qwotients, Fraftions, and Rations, are oft defigned in the fame manner: And $\frac{1}{2}$ may either fignifie, The Qnotient of 2 Inregers divided by 3 : $\mathrm{O}_{\mathrm{r}, 2}$ parts of One divided into 3 parts: Or, that Part of One which is in Proportion to che whole, as 2 to 3 . Aod which foever of the three wayes it be underfood; will fignify the fame quantity. Bur this, faich Mr. Hobs, is, to make Quoticnt, Fraition, and Ration, the fame thing. No, no: procifelj bhe fane, bir of very great A finity (I fuppofeyou will give me leave to ufe that word though Mr. Hobs P. 98. will not) oite to anotber. The Quotient, is the Denominator or Exponent of the Proportion; (as 2, of the Duple; ; $\frac{1}{2}$, ot the fubduple ; $\frac{1}{2}$ or $1 \frac{1}{2}$, of che fefquialcer. σc.) even of that proportion which the Fraction beares to an Integer. And if one of thefe be called by the name of the other; 'tis nogreater fault then to put the Abtract a Quantity, for the Concrete a Quant. (Which Mr Hobs doth as frequently as aher men, even when be thinks he \{peaks. Accurately, and tellsus Lefl. P. I5, 'tis common jpecch, as well among of Mathematicians, as assongft common people; and tbough improper, campot be altiered, nor mesdeth to be altered, to Intelligentit men: and p. 19, that all Intelligent men, are contented with that ex-: preffion ; though He be noc.) And, whecher we fay $T_{\text {woo }}$ $r_{\text {ards }}$ (which is an Abfolure quancity) or, T be dowble of a $Y_{\text {ard }}$ (which isa Relacive;) 'cis the fame thing in reality, though in formality of fpeech different; And the like of Half a Yard, or an Half-Yard: (This a Fraction; that, a Ration:) Which Identity of fignification, under the Differenc formatity of fpeech, is the meaning of that which Mr. Hobs makes fo much of (as having found a great purchafe) pas.82. Frationes nibil alind fume quam Rationes. (Which is as much as to fay Triens is the fame with Suhte mand

54

HORMIUS
Diduidium or Samis, the fande with Suhduplinem ; that aio Half-rard and Half a rard, is the fame.)

And heobferves(peg.82.) that I Gay Daplixm, wiplumen, ©q. ¿are taken to be Names pfRation (and rhe like of Subdiphome,
 ; arethe fame for fubflance with Semis, Triens, ©f:c.) He "would fain carp ar it, but knows not which way to form his Objection. Somewhat he fufpects there is, not Accurace; but is not himfelf fo Accmare as co find what ic is, Therefore I hall a liecte help him out. When I fay Duplame eft Nomon Rationis ; 'cis at the fame tate, that we fay Facher, is a Nanme of Relaciens s. whereas (according to Mr. Hobs his \$upifara, or as he dach conftancly writeic, αx profier,) nor Fatber, but Patermity, is che Relasion; and Fatber is but the Relata which haxh this Relation. And in like manner Daplumis nor precifely the Ratio, but Rationem habem; nor the Rate, but the Rated : (dizionns is the Ratio.) Bur for vatric of 2 Coucrecte (for bad I faid Rationasum or Proporcionatum, he ivould have called fir Barbarons) I made bold with the $\operatorname{Abfiract}$. Which had he difcerned; he would doubcleffe live rebuked me as feverely, as he haxh done my betters, for faying a Quartity inflead of Quant.

But, why may not Duptum, be Ratio? Becaufe (he selts uspag. 1 3-98.) Ratio is not Quantitas efbfolista, bue Rt lativa or Comparativa : Well: And is nor Duplum, Rela tivend ? Is not-Duplums, Dimidii dxplum ; and Dimidium, Diplidimidisma \& Doth:not himfelif rel us (Leff.pag. 81) ahac, bulfs, and thirds, drequre minose of Quamaty Comprived? Bur'; by:quattics Relativa, he means', Relatio. Nery good: He fribuld then bave faid, 'Tis Relatio quattiratis'; not Qamanizen Rolations. Fot Relativa is as much a Cuncrefe, as punplumal. And therefore This as much à Ration, as That.
1 hizie detained You, \mathbf{i} doube, too long, in tracing Nirfiobs white he is pieking. Sornewes: Bunc being thus farre ingaged, chidr's one Sirep more tyes in his way, wes I mift remove.

The Dwotion of the Antecedeir Divided by the Conio-
quent (which gives Denomination to the Ration or Propo $t_{i j}$) what to call at prefent, fo as to fatisfie Mre, Hobs, doe pot well know.' If I hould call it the 'Oxantity of th Proportion, as rome have done : Mr. Hobs tells uss, p. 8 c H_{e} dath not believe I ever faw any Authour who did fo call is (it leemes he hath not.) If I call it' Qsotient; he will te me, Quotient there is nope but in Aliquote pars. Leff. p. 20 (Yet Dial. P. \boldsymbol{Y}^{2}. he fayes; If 15 be divided by 4 , the Qui tient is 33.) If 1 fhould call it the Denominator of the Pro partion; he would pervert my words, and take ir prefently for ghe Denominator of a Fraction; and aske, wherher of the \mathcal{D} enomsinator be Four. I hall call it at prefent the E_{x}. ponems of the Ration ; as 2 is the Exponent of Dyple; 3, of of Triple ; 1 $\frac{1}{2}$, of Sesquialier ofc. (nor fhall Imuch con'cern my felf whether Mr Hobs underfand it not; I write to You who doe.) Noy 1 doe fometimes (as others have done before me) to chis Exponent give the name of Ration; (as Ratio $\frac{2}{3}$, for the Ration of 2 to 3 , or the Ration whofe Exponent is $\frac{2}{\frac{2}{8}}$.) And this is that which Mr. Hobs can not underfland. Bur, that 1 am not the firt who have thus ufed to \{peak, Mr. Hobs will be my Compurgator: For finding thar Mr Oughtred is wont fo'to fpeak; (in the Latine, as well as che Englihh ; though this Mr. Hebs would fain diffemble:) he would have it thought pag. 82. that I tranlated his Clavis into Englif. (Whereas, the eruith is, when that Book Was firlt made Englifh, I underftead as litrle of Specious Arithmecick as Mr. Hobs doth now : To farre was 1 from being the Authour of that Tranllation.)
But, (if it were worth while) I could mine words as finely as Mr. Hobs, and Jplit a Haire as nicely às hé. And cell hin, that even what we commonly call the Qutient in Divifion; is capable of more formalities than one, according as we fuppofe the Queftion to be varipuly pur. For example. Becaure 2) 6(3. That is, if 2 divide 6 , he Quotient is 3. If the queftion be pur, according to Enclide's fyle By what Number doth theNumber 2 divide the Number 6;or,
porund, divide 6 pound; (which is as much as, what Numter Multiplied ineo 2 pound, will produce 6 pound:) the R'otienc will be Three; (a number Cardinall.) Bue if we put in (as ufually we doe; and from whence Quotient takes its name) Quoties, or How of fen, is 2 contaived in 6 , (or 2 pound in 6 pound ;) the Qentient is T wise, (a numerall Adverb.) But if we putit thus, Quota parrs is 2 of 6 : the Anfver is Terria; the part denominuted by 3 ; (and hence the Qiotient is called as well Nwmerus Qxotius.) But if thus, Qiotuplum is 6 of 3 . The Anfwere is Triplimm. So that 3 may be interpreted (accarding to the feverall norions in which we conceive divition) to fignify, Tria, Ter, Tertia, or Triplumn; which you flenfe. Though ufually we take it iotbe a Cardinall number (from whence the reft are denominated) or what is Homngeneous to it ; which multiplied inco the Divifor, dorh produce the Dividendt And if fo taken, The Fraction (proper, or improper) is Rrtio in Concreta: The Quotient, is Denominator Rationis, or Exponens Rationis, or Qsaxititas Rationis, (for that 'tis fo called, we fhall hear anon:) And the Relation, is properly Ratio in abftracto. Thus becaure 5 divides roby $2 ;$ Dxplums (the Double) is Ratio in concreto: Sundrons (the Doubleneffe) Ratio in abfiraito:And $D_{x o}$ (the Quotient, or number $T_{\text {mop }}$) is Ratioxis Exponens. So (if to divide s, by $\frac{A}{A}$,) the like is to be faid of Dimidium (the Half;) Medietas (thé Halfneffe;) femis uordsos (Half One.) But enough of this. If Mr. Hobs can diftinguifh more accurately; I hall be willing to learn.

I hall trouble you bur with one. woid more about the name Ration. Thefe Numbers (o: Quancities proportionath, to them) 1, 2, 3, orc. being propofed as Rationals; Yout have heard, I fuppore, (though it feemes Mr. Hobs have not, $\mathfrak{i} 2, \sqrt{3} \sqrt[{\sqrt{4} \text {, ©fc. called Irrationall. Bux, this (} 1,} ~]{1}$ fiid) was but what Exclide calls Incomimenfarable (to thofe , expofed Ratiomalls) not Irrationall: And that by Imratiou sall he intended only fuch as were nor fo much as porentin
cumminnurabiles' that is, whofe Squares are not commenfurbble to the Squares of the Expofed Rationalls. Thus a being expofed as Rationall, $\sqrt{ } 2$ will be Imcommonsurable, but nor (in $\varepsilon_{\text {welides fenfe) Irrationall, (becaufe } \& \text { the fquare }}$ of 2 , and 2 the fquare of $\sqrt{2}$, be commenfurable:) but ${ }_{1}+\sqrt{ } 2$, will be Irrationall, becaufe irs \{quare $3+2 \sqrt{2}$, is not commenfurable with 4 the fquare of 2. If you never heard or met with the word Irratiouall ufed in that former fenfe ; You may think this Intimation, of Ewclides ufing it inche latter fenfe,fuperfluous: But if You have ; You may binh Mr. Hobs his cavill pag. 83. may very well become bim, bur noc another man.
I have now infifted fo long upon the Name of Ratio, that You may poffibly think 'ris more than it deferves. But I bave the rather done ir, becaufe, though Mr. Hobs's' Objetions were nor worth half the while ; Yet Ration, well underfood, being the Life of Mathematicks, (as being of fuch Vniverfall influence into every part of ir, upon all ocafions,) You will think, though the Objections do not, the Subject may deferve a little time to be fpent in the Clearing of it. And I would willingly write fomething, (fince 1 am a writing) that may be more Couffiderable, than, fhewing that what Me. Hobs hath faid, is not.
1 Ihall therefore next confider Ewclide's Dofinition of Ratio, Which hath fared the worfe with Mr. Hobs, becaure I have formerly explained it, fo as to make it inrelligible, and fignificant at a better rate than as Mr . Hobs expounds it (Lef. p. 8 .) ed what-hall-I-call-it As. neffe or So-neffe of wo cMagnitades. or (as p. 16.) a Whatficalt babitwde of Qmantities : Reproching ir uponall occafions, (Lef. P. $7,8,16,20$. Dial. p. 44,$45 ; 82,88,100$, as, that 'tis Intelerable, In Ifgnificant, Imept, Ridicullows, As bad as any thing mu ever faid in Geometry, by Orontius or mg Self, That Euclide mac corfounded; did but Tuffire, (as not knowing what to (ay) did not well noderiftand the nature of. Propiortion. Of.

 (Dial. p. 44.) renders thus, Ratio eff duarmí maguitudin nnos cinJdem gearris matua' quadays babitudo. So thax, x
 do. kut what babitudo means, he camnat, underftaud, p.82. He thipks $p .45$. is fignifies a kind of having, or boing bad: And the belt he can make of it (p.45.c. Lof.p.8.) is but this. that is fignifies a certain asseffe or fomple: And blamesmef Dial.p. 10.1. for taking Habitudo, to lignific Relatio. For ho thinks, p. 100 . that babbituda (being derived from kabee) mult lignifie the fame with babitur, which is fanilitar agon confuetudine acquifita. (And if I hould tell him that Ha birudo and Habitus differ as much as géros and "Esus, I fup: pofe he would fay; That's nothing at all; no more thant
 hath (which becaufe he chinks it of momens, he gives 4 more than once, Leff.p. 8. 'Dial. p. 4 s.) that Enclids is the word gioss, did anely refpect that Form of Speech amongsf the Greeks, yspor $\chi^{\prime \prime}$ (ita Je babet:) and chat, if they bad expreffed Proportion by हैlas Ret, Euclide monld have deffued
 Mr Hobs, is nor very good at Cueffing: nor doth the take his Aime right : For Exclide's conftant phrafe is ifas bob
 define' Proportion by notà zotia, but mod gioss. Aid had Mr Hobs confulted Euclide's Greek, he would have found no footing for that' Phanfie. But, 'ris like the Dilit gence which he is wont to ufe in his Obfervations.)

But. (though Mr Hobs be c_{i} another Opinion) with You, I fuppofe, it will not be abfurd to fay that Habituda:
 Se hable ad,) if it had been Euclides phraf, mighs wetto enough referre to what Arifotle calls to opos πt Rt lation.

And that soic, may be fomewhat mare than sriquedam, I bolieve you may be apt to grant allo: and, that it myy
imqly in moodr, geality. For though Mr Habsp. 45,82 ac. may defpife Arifotles: Pradicaments; (becaufe ho thinks pis own Pradicaments better,) Yer that Arifotle Predicaments, may give light as to the ufe of Words in Euclide (and fomewhat moie rhan thofe of Mr Hobs) You will think is more than polfible. For they did nor live sither fo long, or fo far, afunder; but that they migh well enough conform one to the others language ; or both tothe common language of thar Time and lilace. And tberefore that som' g'ous, may be a Qualitative Relation, or fuch a Relation as may appertain to Quality. And;
 to the Quality, bur ariferh from the Refpective Quantit) of thofe Magoitudes.
For though to Mr Hobs, p. 101, it feems very frange, that Figures flould be otberwifo compared in Geomistry tben ato their Quantity, (How Great :) Yer to You it will not beftrange at all, Thas, befide the Area of a Figure, Quanta It ; a Geaneter may confider alfo the Species of ir, Qualis fire (what hind of Figure, or of What Fajhion; as well as How Great.) And that a Figure may be Specie data, when itiqnot Magnitudine data. To fay, It is Talis, Sxich a Figure, and, 7 auta, So Big, are two things. To fay that fach a Field contgines an Acre, determines the Quartity ; but to ray, 'Tis Resud, Square, Triangular, ef quillater, e Equicrurel, \&c. determines, Qualis, Whar kind of Figure is : and is thought by eArifotle to belong not to his miman, the Prxdicament of Quantity; but to bis rixioiv, the Predicament of Quality. And though S Superficies be aSpecies of Quantity; yer Figura(as Triargulum, Quadratum, Circulus, \&c.) is with Ariffotle (though perbaps not with Mr Hobs) the fourth Species of Quality. (Which is indeed a Modus of Quantity, but a Species of Quality.) And I believe that Euclide (in ufing the Word mod) did racher repeet that which driffot $l_{\text {g }}$ than that which Mr $H_{0} \mathrm{bs}_{\text {; calls }}$ 亿uis.

Now I need not tell you, that decermining the Species or kind of Figares depends upon the Proportion, and the Poftion, of its Parts, or Bounds, each to other. And according as both thofe, in two Figures, be or be not the rame; thofe Figures are called Like or Unlike. Which Words, L faid, are ufed to denote an agreement or difagree ment in Qnality; like as,' Equal and Unequal, in Quantity And if Mr Hobs, p. 45, 82. take it to be a ratroperpank thus to argue; Proclus, it feems; was womperuavìs as wal as I. For he cells us (upon that of Ewclide, All Righs

 Monois, : "Opoitrus. Right Angles, as to the Quantity; "nt' faid to be Equal; but, as to their (Fanhion, or) Qualitit, Like. Equality, in Quantities, being the fanse that Likeifi is in Qualities.

And both of thore Refpects (that of Proportion, and that of Pofition) are sotal gious, Qualitative Refpetfs, (s determining the Figure, a Species of Quality:) but this of Poftion; xT1 xi xêora, as to the Situation of the Parits; that of Proportion, $x^{\pi 7}$ नilr minaxionnte, as to their Rerpeeive Greatneffe. In Nambers, (which have nothing of Laded Pofation,) that of Propertion hath only place; and deh therefore (withour, that other) determine Similitude. As two Numbers (fuppofe $6=2 \times 3$, and $24=4 \times 6$,) are fiid to be plani Similes, if their Fafteres be proportional. At. on the other hand, in Angles, where the Length or Pro portion of the Crura is not at all confidered, thert Pofition alone determines their Likeneffe or Unlikereffe, (at well as Equalitic or Inequality) as you heard buit now our of Proclus. Bur in Figures, we confider both.

I have infifted the more on this, becaufe I find that ochers, as welt as Mr Hobs, are apt, through inadvertency, (and becaure we are not now wont, in ordinary Speech, to call Figure a Quality, not to confider, chat Proportion is
 and is therefore roic gias. (Nor are we to conlider what is is now a daies called in ordinary speech by Us', or how it now ftands in Mr Hobs's Pradicaments; but how the Grecks did Then call it, and how is flood in Their Predimenents ; if we would know what soud fignifies in Ewclide.) And this Inadvertency, may be the reason, why moft Inerprecers, neglecting the Emphafis of roia have rendred in by guadam babitudo, as if it wete in Groek gios sis, not rui gías.
And therefore I hould chule, as heretofore (norwithAnding. Mr Hobs's cavill, that gualitativa is nor Latine,) to cender is thus, Ratio oft duarum Magnitudinume bomogomarmon, qua focundum quantitatem eft, ad invicem habitudo qualitativa. (Where qualisativa diftinguifherh Ration, from that Relarion which concerns the Difference or $E x$ offe, Or , as che Scholiaft calls it, that dMe grorts, which is Mad ioppixen xy emairon, which is Qunnetintive; And, fundmom quantitatem, diftinguifhech it from that ocher Qualitative Relation which concerns the Poftion; as than wherein a Rhombus differs from a Square:)
And this I take to be the true Emphafis of $\mathcal{E}_{x c}$ lide's Definition: Save that I am to adde further, as to that prymuxínute, (what I know Mr Hobs will not allow me) that rhe mnnend ens or Qunantity which here is meant, is that which we call Q wotient, (in the larget fenfe;) which is the Refult of Divifion, (wherher a true Number, as in fome cafes, or Homogeneous to it, as in all cafes.) I know that Mr Hobs would with great difdain refent this Anfertion: As having, p. 86. all ready declared his fenfe to the contriry. For though, as to the Antiquity of the Chaldkam Aftrology, when Hobs thought I could not, Thoman was of opinion, 'twas poffible I might have feen fome Author of my judgment : Yet here they both agree,that I did but play the Mountebanck, in Saying Some, when I did not unow Any of that opinion; For fo 'cisconconcluded, pag. 86.

Ffo doth mot believe that Iever Jume axy Autbor wobodid inter pret the Qumititie of Propertion in shis manner. For either he was himfelf, or did think me, ro ignoranx, as noc robe able to atifyie any. But of this rbecaule pou fee there is ina dealing with Mr Hobs, but figndicis $\$$ abulis, I I hall give you an atcount by and by, (that by bmanofons he means what fie call the Qutrient.) At prerenc. I hath ondy pell fou out of the Scholiatt, why he doth wre the word mandizh the dofanty'; rather then rooitins, the Cenatiry. And 'is the fame with that for which I fay Quantuglem, rather thin Q rotsplinin; becaufe, of a more large exerx. For fo his

 in Magnitudes, bhere mul be Ration, which caistret te exppliadk byNumber. And bjatt for this cunfo kuclide in his definitiong
 tity, or Owantuplicitit, (which determinesthe Q vamanpläno cthe (iuotity whickifies Quotiplyins:) For thonghabe ffift

 is a O anantuplicity Whete though he do awead the Qur. ruplion' (targer thian perhaps Mr'Hobs moudd allow) to at proporcions explicable in true mumbers; yer this Qumath plum he exrends firther.

And I hope, By this time, Ewelide's Definition, Ts Incel ligible, and significant. By geots, byobexute, is meant what we call Relation or Refpett; and by worw yodss, 'Qualin tive Refpect, or Refpective Qadalit'; and by Quabutive (jod: the to noos', But the miningtns) the Qematient, or Qimnation, Funm whence the $\mathrm{Q} x$ maxipliwis is denominuted. And rache
whole definition amotnss to this, that Runtion or Proportion, is the Refjettive Quatitie, of two Honog gercoms Qumatities, ot Magnitudes, we to the Qwotiont. Which I take to be tomevthat more fignificant, than Mr Hobs's effneff, or yomeff?

We thall next confider what is meant by Rations Compofitio. And I have faid formerly, that there is a Twofold Compofition of Proportion. The cne by Mentiplisution of the Exponents; the orther by rhe Addition of them (as when wefay the Double of tbe Treble is equal to the Seximple; but the Daible and ithe Treble is equal to the Quixtuple.) And boh thefe are (not only in the \#fodienn Mathematicks) bur in Euclide's Elements, called Compofition. The former in the lat definition of the fixth Book; and the latter, in the foutth definition of the fifth book. (And this Mr Hobs, when he pleareth, ran acknowledge, as Let \int. p . 8. where he telis os,' that the Compofitio Rationtis, which Euclide defines in it def: 5. is not the fame which be deffineth before the fix th Eltiment.)
That lat Definition of his fixth book is this, $\Delta 6_{j}$ (at

 Copies have gra's, yet I take tira; to be the berter feading; and Mr Hobs allows it : only whereas Mr Habs thinks it tabe chus fupplied, tiva' λ topy, I think that Enctive doth rather mean riva' minixbtrure, notwithltanding the authority' of Mr Hobs's Aironymous Book of an hundred years old, which, citing the Propofitioh, faith rẹà Xoper.) As of 2 to 3 , and 4 to 5 , the Compound Propertion is that of 8 to 15 .

What is meant by maixSints, (which is.the only thing ta queftion in this definition) 1 hid, Inrerpreters do not all
 Pröportions, here meant, (and MrHoks with them) to be the thineciedent and Confequent of each Proportion. And then their meaning is, that the Antec of the firft
multiplied into the Antecedent of the fecond, producetb the Antecedent of the third, (as $2 \times 4=8$.) And the Confequent of the firft, into the Confequent of the fecond, produceth a third Confequent, (as $3 \times 5=150$.) And there is no great inconvenience if the words be fo taken; the fetrif, even thus, being found. (Bur then we muft read it tepus, not rep+izfor if mancolntas be the Termis of the Proportion, then is the new antecedent one maixoipas, and the new Confequent another. But Mr Hobs, though he embrace that Nocion, will not allow that reading. And if he chink to falve it with his govd afper, as if the tivo nev Terms, did zoicily тıvà aópor; he mult confidet that motivy is here a Technical word, and that which maxaÓ7nns zpMaonetcions morisif, is the Fallum, or Producl of a Multiplication; and he mult not allow that the Ternesof the Proportions, that is, the Absolute-Qxantities, do'by Multiplication Produce a Ration, which, he faith, is noc an Ab olute but Relative quantity.)

Others (chough Mr Hobs cannor believe it) do by mmarxotus underftand the Quotient, (or the Exponeut of the Proportion:) And fo (in the cafe propofed) $\frac{2}{2}$ and $\frac{4}{5}$ (the Exponents of the two Component Proportions, 2 to 3, and 4 to 5) do by multiplication produce $\left(\frac{1}{1}, \frac{2}{2} \times \frac{4}{3}\right)$ the new Exponent of the Compound Proportion. (And then we muft read it zoré, as fome Copies, and moft Expofiturs do agree : for the new Exponent is but one, though the Terms of that new Proportion be two. Yet not fete $\lambda \delta p$,
 Meibomius acknowledges Dial. Prop. P. 25,79 . And pag; 96. himfelf fo fupplies it as to this opinion.) For the two Exponents, by, Multiplication, produce, not a Proportion but an Exponent of a new Proportion.)

Now though I faid that, either way, the Refult of the Definition amounts to she fame iflue (wherher we $\sqrt{2}$) $\frac{2 \times 4=8}{2 \times 5=15}$ or $\frac{2}{2} \times \frac{4}{2}=\frac{2}{3}$) Yec (co juftifie myrufercion) for

Mr Habs doch not believe, that ever any but iny felf did take minoxima to be meant in the later fenfe) I Thall out of Eutocium, (in his Comment on the fourth prop. of the fecond book of Archimedes, de Sppokta Gt. Cylimdro; and cred by Meibomies. p. 14.) rell yout what in his dities, and thore before him; was thought to be meant by it, (for fhould I produce anty Modern Interpreters, they might be condemned for Hodiern as well as I:) who, in ordes to prove, that, If between two Nuthberssiot CMagnitudes, we iturpofe a Middre term; the Proporition of the firflt to :he thind, is componnded of the Proportion of the firfit oo the Middle, and of the Middile to the third; He thus proceec.s.

 t ingessor, \&c. We are firf (faitt he) to confider bow, of Prequrtions, a Proporsion is faid to be Compounded: That is,
 Proportions, modtripliod into enctiother, do prodidce ac newo orie. Where, by the Quantitia (dminditin') is meant, that Number from which the Proportion tialies its Dindemitation: (Ardjo
 Mufate and liorond in bits. Cominintaric on the et rith metical Introduffioin.) that is to" Fay, thiat Ni/mBet, which, mindiplied into the Confognent Term of the Proportion, produtoth the Antecedent: And this Quantite (faith Be ${ }^{\text {P }}$ is moof

66
proportion is denominated by．So that（to Speak yet more plain
$l y$ ，the Quantity of the Sefguialter proportion，is one Unite and an half， $1 \frac{1}{\mathrm{z}}$. I hat of the Sefquitertias；one Unite and a third part，$x \frac{1}{3}$ ．So that（as mas Said before）the Quantity of the Proportion，multiplied into the Condagnent term，products the Antecedent．．For of 9 to 6，which is Sefquialter，the Quantity 1 monlipliced into 5，produceth 9．And in like manner，in other proportions．And the fe things thess premijodr Let the two numbers given be $A B$ ，and a third taken at plate
\qquad sure C ．We are to Shew，that the Proper． tron of A to B is compounded of that of C．．．． B．． A to C ，and of ：C to B ．Let the Q wantitit D．．． of the Proportion of A to $C, b e D$ ；and of C to B, E ．And let ε into D ，make E．． F．．．．．．． F．．I fay that F is．the Quantity of the proportion of A to B ：that is，if F mit tiply B ，it will make A ．For，let B null－ tiplied by F ，make G ．For af much then as B into F ，makes G_{1} and B into E ，makes C ：therefore as F to E, fo is G to C ． Again，forafmuch is \mathcal{D} into E ，makes F ；and \mathcal{D} into C makes A ：therefore，as \mathcal{E} to C, 有o is F to A ．And（alter－ mutely）as E to F ，fo C to $A:$ And（inversely）as F to E_{j} fo A to C．But we have fleeted，that as F to E ，fo is G to C Therefore，as G to $C, \int \frac{1}{}$ is A to C ．And therefore A is equal to G ．But B into F makes G ，therefore B into F mes A．F therefore is the quantitic（zmanóans）of the Proportion of A to B．But F is the TraduCE of D multiplied int E ； that is，of the Quantitic of the Proportion of A to C ；into tho Quantities of the Proporision of C to E．This proportion there a fore of A to B ，is compoismded of that of A to C ，and of $C_{S} B$ Which was to be demonftrated．

But to the end that，by an Example，I may farther mande clear what hath been fard．Lei，between the numbers 12 and $2 x$ a，middle number be 4 ．I fey，that the proportion of 12 to 2, that is，the Sextuple，（ion \mathcal{O} i Ésendíacos，is compaundedof the triple；（ 刃\％刃isieeris，）；I2 to 4，ind of the duple：（\％do
sharis) 4 to 2. For if the Quantities of tbefo Proportions be multiplied one inte the other, that is 3 inte 2 , is makes 6 , whith is the Quantisic of the Proportion of 12 to 2 , (whith is fextuple ;) as was propofed to be foowed.
But in cafe that middle term isterpofed, bappen not to be Iffe than the greater, and greater than the leffer (of the two given terios,, but contrariewife, greater than cither, or leffow iban either; yet even thus the forefaid compofition will follow. Between 9 aind 6 , let a middle term ineorpofod, greater than either, be í2. I Jay, that, Of the fubfupertertian (τ x̃ imsmi gity) that of 9 to 12, and of the duple, that of 12 to 6 , is compofed the fefquialter, that of 9 to 6. For the Qwantitie of the Proportion of 9 to 12 , is $\frac{3}{4}$, that is, $: \frac{1}{3}$ and $\frac{1}{6}$; and the. Q nantity of that of 1.2 to 6, is 2 . If therefore we maltiplic 2 into $\frac{1}{2}$ and $\frac{3}{4}$, the product is $1 \frac{1}{2}$, which is the Quantitie of the Sefquialter Proportion, which 9 bears to 6 .
In like manner, if between 9 and 6 , the middle term inter. poled be 4: Of the proportions of 9 to 4 , which is duplefefquiquartan ; and of 4 to 6, which is fubfelquialter, is campownded the Sefquialter proportion. For if again we meltiply the Quantitie of the Duple-fefquiquartan, which is $2 \frac{\pi}{5}$ g into the Quantity of the fublesquialter proportion that is $\frac{2}{8}$:2pe Shall bave $1 \frac{1}{2}$ the Quantity of the Sefquialter proportion, as wul faid before. And' in like manner 'truill bold in all safes what ever.
Frow wikat is faid, 'tis alf o manifft, that if between two $N_{n i m b e r s, ~ o r ~ t i n o ~ M a g n i t u d e s ~ g i v e n, ~ t h e r e ~ b e ~ i n t e r p o f e d, ~ n o t . ~}^{\text {. }}$ me but more intermediate terms ; the proportion of the Exteams is compoonnded of all the propertioms which each terms buth with bis immedinte Subjeguent, beginning at the firfts and ading at the laft, according as they follows in order. F. or Vetween hivo tervis A, B, len more thän ome be intorpofed, $\mathcal{C}, \mathcal{D} ; I$ ficy that the pro. portion of A to B, is compatended of thoik: of eA to C, andr of C to $D ;$ and of D ion B. Por feeing that of 1 to B is sonponudod.
of thicit of A to D, and of D ta B, as were said above; and that of A ta D, camponinded of that of A ta C, and of C to D : Thersfoxe, that of A to B is compounded of that of © \mathcal{I} ca C, and of C to D, and of \mathcal{D} ta $B_{\text {. And the fame with in like }}$ manner be flexed in all ocher cafes. Thus, far Entocius.

I forbear, as needleffe, to cite Theom and others to the fame purpose. (This alone, is enough to make Credible, what Mr Hobs, could nor believe, That fore other betide my self did underfand manofomiss, the Quantitios here paten of, in this fenfe.) But this out of Eutocizus I have the rather produced ar large, as: well because of that clear account he gives us of Compounded Proportion, and of Euclide's Definition thereof, as himself and the Ancients did underfund it ; As also because. I find that Mr Hobs is not the only peron, who, looking no further than the Latine Translations, is apt to understand Quantitas, as if here used in fuch a fence, as when we call a Quantitie that which Mr Hobs would have us call a Quant; and fo to take the minxornits $\lambda_{0}{ }^{j} \omega \boldsymbol{y}$ for the Terms of the Proportion, (the Antecedent and Confequent, or the Quantities Compared which Enclide ufeth to call uezínn, the Magnitudes; : not minaxionils; (Which mistake is the more advanced, becupre Euclide peaking here of more Proportions than one, faith manuimilos λ águpy, whereas had he spoken but of one, and said in the singular maxiótus λ oops, the miftake had mot been fo eafie !) Not attending that Euclid (who doth not take a pride in needleffe varying Words and Phrases, but is rather rigidly tenacious of his, forms of Speech) doth by munioninus Qramsitie (which is in Such manner different from roots Quotitic, of Quotient frisuly for called chough. Homogeneous to it, as Quantuplam from Quoter phems,)mean thai Quantitia(rather than Quotitic) effable or uneffable; which denominates the Quantaplums; or which multiplying the Divifor doth produce the Dividend, or multiplying the Consequent doth produce the Antecedent n of the Proportion. (Which rightly underfood,
addeth a great light to thole two Definitions of Euclid where that Word is unfed; that of Ration or Proportion, $3 d 5$ and that of Compounded Proportion, 5 d 6.)
Thus if $\frac{\mathbf{A}}{\mathbf{B}}$ and $\frac{\mathbf{C}}{\mathbf{D}}$ (the Quantities or Exporichts of the two Proportions, that of A to B, and of C to D,) be mulereplied the one into the other; the product $\frac{A C}{B D}=\frac{A}{B} \times \frac{C}{D}$ is the Exponent of a Ration, which by this Definition is to be called, the Compossod of ibofe two. And what Entocins doth demonftrate; That of any three Magnitudes $\mathrm{A} ; \mathrm{B} ; \mathrm{C}$, the Proportion of the firft to the third, is compounded af that, of the first to the fecond, and that of the fecind to the third: is evident; because $\underset{B}{A} \times \frac{B}{C}=\frac{A B}{B}=\frac{A}{C}$. And, were there ever fo many, yer fill $\frac{A}{B} \times \mathbb{C}^{\times} D^{\times} \frac{D}{E}=\frac{A}{E}$. For the intermediate terms, being frt Denominators, and then Nu merators, of the Exponent Frictions, do fill deftroy themselves, how many foever they be.
And when Exclude defines, 10 d, If $\mathrm{A}, ~ \overline{\mathrm{~B}}, \mathrm{C}$, D, \& ce. be in continual Proportion, (that is, if that of A to B, be the fame with that of B to C, and of C to D, \&G.) the Proportion of A to C is Duplicate, and that of A to D Triplicate, \&C. of that of A to B. 'Pis as much as to fay thee a Proportion thus compounded of Equal Proportions, two, three, or more; is fid to be Duplicate, Triplicate, \&cc. of each of them (damiaglas, ;ु! $\& \varepsilon$. For chat $\lambda o_{2} \theta$ divide. $\theta, \& \%$. fignifies mother thing we heard But now :) For then $\frac{\mathbf{C}}{\mathbf{C}}$, that is,,$\frac{\mathbf{B}}{\mathbf{B}} \times \frac{\mathbf{C}}{\mathbf{C}}$, that is, ${ }_{B}^{A} \times \frac{A}{B_{j}}$ or $\frac{A A}{B E}$, is the Exponent of the Duplicate, and $\frac{A}{D}$
that is, $\frac{A}{B} \times \frac{B}{C} C \frac{C}{D}$, that is,,$\frac{A}{\mathbf{B}} \times \frac{A}{B} \times \frac{A}{B}$ or $\frac{A A A}{B B B}$, of the Triplicate, of $\frac{A}{b}$ or that of A to B. Thus the Double of the Double, the Treble of the Treble, the Quadruple of the Quadruple, 2 c . and the Half of the Half, the Quarter of the Quarter, \&cc. are in Duplicare proportion, to the Double, Treble, Quadruple, \&c. the Half, the Quarter, \&c. And the Double of the Double of the Double, is Triplicate of the Double. And fo of the reft.

Bur here Mr Hobs can neinher agree with $\mathcal{M e}_{f}$ with $E_{K_{-}}$ elide, nor with bimfelf. He had cold us, in his Latime Edition (Corp.cap. 1.3.9.16\%) that (of quantities in continual proportion). If the Proportion be of the Greater to the Leffe, the proportion of the Firf to the Third is Double of that of the Firft to the Sacond; and that of the Firfito the Fowrth, Treble; meaning (as he rells us) by Double and Treble, that which is commononly called Duplicate and Triplicate. Bux if: the propertion be of the Leffe to the Greater; the proportion is not properly faid to be Maltiplied, but Subimultiplied; (for Submedriplicarre was not then a Barbarous wo-d; though now Dial. p. 50, 5 1. Supduplumbe) and that of the Firf to the Third is the Half; and that of the Finft to ihe Fourth is the 1 hird part, of that of the First to the Second ;- meanin ing by the Helf, the Third purt, \& c, that which is commonity called the Subdiuplicate, Subtriplicate; \&oce. (And yet he there prefently addeth; that $\cdot \alpha$ Proportion: is Divided, by interppofing Mean proportionals betn e:n the O wimntities comipared: As if ir were one thing to Submaltiply by 2 , another thing to Divide by 2 : And, of the proportion of 1 to 9 , the Half (by Submusltiplication) wete thrt of it to 81; and yet the Half. (by Divifon) were that of i to $3:$: And Ewelide miltaken when he tells us that ejuxdem dimpidia \int wnt zeter fo agualia.)

But when I had told him in my Elenctous, That to Submultiplie was all one as to Divide; And, that whecher
the continued Proportion were of the Greater to the Less! or of the Lefle to the Greager, yer fill that of the Firt to the Third was Duplicate (nor Subduplicate) of that of the Firft to the Second. He mends it, in the Englinh, thus, If the Proportign ba of the Groentar to the Lefler, at 4,2, I; That of 4 to 1 is not onely the Duplicate, but; alfot twice as Great, as that of 4 to 2. (Which yer doch not alyaies bold: For that of $\frac{2}{4}$ to 1 is duplicale, but not twice as great, as that of $\frac{2}{6}$ to $\frac{1}{2}$; though $\frac{1}{6}, \frac{1}{2} ; 1$, arein continual P roportion of the grearer to the leffe $:$ and that of 9 ta 1 , is oot onely duplicate, and ac left twice, as grear, hut thrice as great, as that of g to 3.). But athen the Preportion is of the Leffe to the Greater, as 1, 2, 4, that of 1 , to 4 . (he dayeses) is duplicate, yet not Tmice as Great ; bxt contrarily tha Half, of that of 1 हO 2. (For, Now, Duplicate is noo the fame with Double, or twice as great; Xer is to be, lagain; by and by. For he tellis us, Dial. p. 88, Quicguid duplicathr, fit mon minus Duplum guam Duplicatum, \boldsymbol{t}; ystratio 1 ad 4 \& Duplicata rationis I ad 2, ita etiam Duplaoft. And yec zain p_{1} 178. Rationem I ad 4 Duplicatame efo ration's I ad 2 ; rationem iamien I ad 2 majorem effe guam Retip I ad 4; Paradoxa non funt, Ab furdas (unt.)
When he had पhus, inhis Englimh Edition, mended that of the Larine: He doth yet in his Leffons (publifiod ac. the fame time with the Englinh);p. 23. refume what he had laid afide, (that 1 to 4 is not Duflicate bur Subduplicate of 1 to 2 ;) Becaufe 1 to 4 is Lefle than is to 2 ; and it is A $16 \int_{\text {urd }}$ to $\int_{a y}$, that the taking the fame Quantitic Twice, foiuld make it Leffe. (And yer affirms, Dial.p. s i. Ex duplicatione aliquid fieri peffe aliquando minus.)
So that the proportion of 1 to 4 , to that of 1 to 2, he tells us fometimes, is not Duplicate but Subduplicate; Sometimes, 'tis Duplicate, bur not Double; Sometimes, tis both Duplicare, and Double; Sometimes 'cis neither Duplicate, nor Double : That, to fay, it's Duplicate, and yet Leffe, is fometimes Abfurd, fometimes, tis very True.

Which niads me of a lace Treatife of Tours, thas You bere pleafed to fawour the World withal, concerning Fhiditic and Conffence: For if, by Finent, You meatr hat which is oppofite to Conffert; You mult needs ace nowledge Mr Hobs to be one of the moft Aweit Wricers You have yet met whith.
But, twhat ever become of the Proporition of $\$$ to 4 , in eference to that of 1 te 3 ; whether it be Dowile, or Dw plicaie, ot both, or noither:; Yer, that Double and Duplicam are every where the fame, he deth ofe tells us: That Ewelide,

 Thut they diffor, in what fwbjett fo ovier, be never yet beard: That inter dobndorov or dntiariora differentiams nullams ob(crvants we 多Grammatifi neǵ, Mathenatici Graci : nor the Latines, bẹtmonen Duplum and Duplicatum: That Euclidi doth infe dindiderio aind A- λ doiar (theugh he never ufe baic one word) promiscuomfly for the fame thing: That by \cdot ofy 0 dianarian (10. def. si) : Exclide moint nothing alfe twa anjo spandore, 2c. Iefl. p. $21,22,42$, Dial. p. 50 , 51,88. \& alibi.

And yet, after all this confidence, he doth allow Dial p. IoI; That I have difervedty reppebiended © \mathcal{M} eibamixs for ermending forme places of the Alaticute by Sivadios' which Thould berde been emended by diminariwr. And, upon cons rence, pag. Iot. Thomiar and Hobs do bo:h believe, barwm vocump atium fenfum eff apud Mathemiaticos, etfiz son femper, fapifficme itamen. And, as we have heard before; he can fometimes tell us of things not onelg. Oupticate, but atfo Double; others Duplioxere, yet bur the Half, not the Double; or twict ins great.

For his contrary opinion ; he allegeth two things :Firt; their Exymology (an A Agument on which he doth oft en lay girear Arefle in Mathematicks ; diradoiO and dindecidy, (as alfo dupla and diplicata) being of a tike oribinal, mult needs figifit the fame thing recry whers (It feenis hie
doch poce chink that a word of an A AnbigubustriLax fignificaion is co:Grammar, may, by a Definizion, be rettraixd in Machematicks to a Particular Determinate fenfe: x, that rizsigurov in Esalide; however he pleafe to define t, is wo be taken for a Square; racher than a thbombe or Rbouboside; for thefe have fow cormers as much as that: Ind in tike manuer, To Iedick, and Induce; Conduet, and Zmance; Refund, and Refufe; Confounded, and Confused; :o Courpound sand Compofe, acc, becaufe they are of like. Origimals, and may in fome cafes be promifcuoully ufed, may therefore be fo ufen every where, and do every where fignifrate asd the fanme thing mitbeut any ambiguity.) And it woth nor befeem a Geomerer, (he tells us) T:beoremmatums pritatemex Ufu Verborum, aftimare; but ex rebus ipfis reffe conceptis. Dial. P. 178 . (For he hath noiv forgotren, thas there is on Trutb, but the trusth of words.) Rue till I Anall find orhers Inducted or Indiced to believe, that 'xis as well faid, to Compound as to Compafe, a Verfe; sicc. I mult Rfyund or Refanfe to be of his opinion; and Thatt y chink ic Canducting or Conducing to right fpeaking and underftanding, to obferve the Ufe of Words as well as their Origimals.
The other is, that in one place of Euclide, fitracionn is wed for Amadiac: And becaure he thinks it of very great moment, we are told it, at lefty:four times 'ovef; (perbaps 0 (fenter) Leff. p. 21. \& 42 . Dial p. 50, \&:88: ' Tis prop.

 prove (and 'tis one of the moft confiderable Oblervations, If his own, that Mr Hobs hath made) that Enclide (aceording to our prefent printed Copies) doth, in one place, in the ninth book, mention a'raiopian siaxiafioya, in a different fenfe from what he had, in the fifth book, defined ג'gop diencoiova. But it doth not prove (what he would
have it) that noy \mathcal{G} simneoiur as it is defined in the fifth book, is the fame thing wich what is called aij \mathcal{G} simadroos, (which what it is, you heard but now out of. Extocius, and may, when you pleafe, fee the tike in: Theen, PTalemy, and others of the Ancients;;). Nor can Mr Hobr be io ignorant, as to think, that devanojic oftriaciart in the latter place ; is the fame with $\lambda_{0} \circ \boldsymbol{\sigma}$ sumariar in the forme. (And, left of:all will it prove whar: Mr Hobs infers P. so that nulle potefte effe ambiguitas in vocibms Surxdre- odr - גeriap, gue idem fignijeant ubique.)

But the truth is ; though, I do not deny but that E_{m}. clide himfelf may poffibly, fome one time, in the ufe of 1 Word, Vary from his own definition 3 . yer 'ris so ver rare for him fo to do, that I do racher believe, that Ewclide wrote, neither foraaciont, as.we now read it, nor dinnedia, but racher findociair: and that firncolent creptis either by the Negligence, or the. Over-diligence foof fome tranfcribers; 1 mean, that 'iwas eicher unawiss mif-written (and fuch faules in manuicripts, are but too frequent, efpecially when: the trạnicribers whderftand litele of what they.write ;) ois, which is the more likely, that fome perfon, who knew no more of the diffetence between δ dirnderous \& $\dot{\text { o Sinkiaciar than }}$ Mr. Hobs, miftaking stanariay, which :was there the Genicive Pluralliof diendacoí, for Stenderiunt the Nomitht.

 Syntax, as he rhought, when be did indeed marre the fenfe:
And a like mitake we may wery well fuppore poffibled in prop.'20.Eb:3: (and fome other places which Mra Hobs hath not oblerved;) where we meet with parice orm - nariav, perhaps mif-written for javia disnaoiot : the ra-i ther, becaufe this propofition is antecedent to that definition io $d s ;$ and it is not Euclides ufuall manner firlt to make afe of a Technicall word in a former book, and then to dofne it two books after.
'Tis true, that Enclide fometimes doth' firtt make ufe of a word in a vulgar acceptation, which when he comes afterwards to ufe ia a.peculiar determinate fenfe he doth then define. As, having ufed μ ipos a part, in the vulgär accepranion, in his ninth Axiome (7 be whole is greater than its中art,) and afrerwatds very frequently in the fame fenfe : hedoth yer, when he comes to ufe ir for an Aliquote Part, give us a Definition to that purpofe, Def. 1. lik. s. In like manner, having, in his tench Axiome, told us, that 7 poo Arieghe limes z̀ meisuvot, do not Comprehend a Space (caking the word meeíxur Comprebend, or Encompafe, in fuch a fenfe as Mr: Hobs's Nurfe would have done ;) when he was to ufe the fame word in another peculiar fenfe, he dorh Dff. 1. lib. 2, fo define it; Afraight-lined Parallelograms is ayd to be Comprebended, meenx sinat, by the two Jreight lines which compregend the Angla. And in his tench Book, mop. 22, 40, 77, being to uie the words Media, Major, $M_{i n o r, ~ i n ~ a ~ p e c u l i a r ~ f e n f e, ~ d i f f e r e n c ~ f r o m ~ t h e ~ v u l g a r ~ a c-~}^{\text {- }}$ chtation, he doth there Define them; though, in the yulhar acceptation, they had been often made ufe of before. Butina following Book, to Define Word, which had, in the Jame Jenfe, been often ufed in the books foregoing, is a thing fo unufuall with Euclide, as thas I beleeve Mr Hobs wilnqe be able to produce any one triftance. (For'tis his contant practife, wheneyer he rakes a word to be of fo unknown, or uncertiain, a fignificatipri, as to need a Defmition, he doth never, in thar Fenfe, male ureof it, cill he harh firft defined "it.). And therefore if he had taken Itastion in $D_{e f \text {. } 10, \text { lib. } 5 \text {. in no other fenfe, then as he }}$ wad before ufed sizadéo O fo often, (and simiacion at lelt Nnce, if our prefent Printed books deceive us not;) he nould either not have defined it at all, or not fo lare.
What ever therefore become of the Word dianejiav; ret the Notion intended by it in that. Definition of the fifth Book, (though Mr Hobs would have us think otherivife, quite another thing from that of drand σ in the books
fore-going. And as for the Two words, though he tell us,p. 50,51 , that the do every where fignify the siant thing, and that Mathematiciais do Nover obfervot ing differcive betwen them ; yet I carnot beleeve him; beciufe he tellsus p. ron that nofoft times they do; if not allways, obferve a differesch

But we have not jec done with $\lambda 6 y, \theta$ tionder, , tuth dupla. That the proporion of 2 to 1 , or 6 to 3 , is wot to be fo called (as well by'eAncient, as Hodiern Geone ters, Greek and Latine,) is fo notorious; that no. (who reads Books) can doubr it. (Ard Mr Hobs, Cowl 100. fayt the fame, ratio 2 ad 1 vocutwr dapla; 3 adr sripla.) But (Lef. p. 2i. asd Dial. P. so. and -elfewhere) he cannot underttand, ho x it can be ratio dapia, double Pro portion. But why not?"Decamfe; Donble Proportion ind needs be the Double of fome ip ropertion: now, of what is 61 3 tha Double ? Is it the double of a Number? or, the downt of a Proportion? "Tis the Double of a Proportion ; of "hate of 3 to 3 , or 1 to 1 as this is the Treble of 1 to 3 . Fo:
 тas auti itarinársoy; ((at which croibomims is fo mach offended, If we Double the Trebte, we tarve the Sextuple, (But the Dupticate of the Treble is the Noncuple.) Mr Hobs, it feems, did not ${ }^{1}$ underltand, thit, as in Numbits, when we fay T woo (indefinitely) we ate by common ugu
 any orher Number, we mult expreffe it, (as two Fourt, that is 8 , \& 8 ;) So, in Proporrions: when we fay indefo nitely the Doable, we are underftood to mean, the Drubla of the Single; but if we would be underftood of the Eout ble of any other Proportion, we muft expreffe it, (asthe Double of the Quadruple, that is; the aetuple, oc. Would you have thoughe that fo great a Mathematician as Mr Hobis (would be thought to bé) thould need a Commentary, to underfanda thing fo plain?

Another thing wherein his underltanding is Deficiens is,abc + the Proportion of Equaltity, or Single Proportion.

Gorp. P. 89. Leff. P. 16, 17, 18, 19, 20. Dial. P. 45, 46, $47,102,8 \mathrm{cc} .7 \mathrm{he}$ Proportion of Unequalls, he fays, is a Quanticy; but the Preportion of Equalls, is not a Q uantity. Had he fayd the Difference of Equalls is not a Unantisy could have beleeved him ; becaufe they Differ not, or, (ave no Difference: But why not the Profertion of Epalls?) Becaufe one Proportion of Equality is not greater Wan another Proportion of Egxality. (True. Nor one Projortion of Daplicity greater then another Proportion of Duplicicy.) And' 'tis abfurd to aske, Quauta oft it qualitas ? (As much as, griasta of Duplicitas?) The Proportion of Equaling, as of 5 to 5 , is Greater, he fays, than that of. 5 to 6 ; and leffe than that of 5 to 3 ; yer; thefeare Dwantities, but that is not. (But why nor?) Becaufe (he tells us) Ratio Defectius efla defectus Rationis. (The Reason of Deficiency, in his Apprehenfion, is the Defect of Reafon) And be beleeves, that I cannot defign the Ration of Equaliry, by other than oa Cipher: (Yes; by I, an Unite: For as 3 . is the Exponent of the Triple proportion; and 2, ofthe Duple ; fo is 1 , of the Single, which is the proporsion of Equals;; and: $\frac{1}{z}$, of she Subduple, de: becaufe the Anecedents so accordingly contain their refpective Conequenss, Thrice, Twice, Cnce, and inuaduc, Halfobce, ƠC.) And, hefays, Propertions of the Leffe to the Gremer: muif: needs be: Negative Qimantitios, or lofse than nothing, Becaunfeoftria Praportions, offbe Liffor to the Greater, the Rropention Counpeuxnded is leffe thane cisher ; (Jut as when two Eractions, $\frac{1}{4}$ and $\frac{1}{3}$, are multiplied; the Product $\frac{1}{6}$, is loffe than either of them: and yer, both thefe; and this, are Pofitive Quantities, not Negacives.)
That which harh confounded: him in this whole bufineffes is thar Fund amentall miftake, in deriving Proportion from the Differences, and nor fromis the Quotient of the Quartisies compared.: For; having fo done, becaure, in Equales the diffesence is northing, he' concludes tie ProPorcion to be fo toos and confegrenty, comparing that of

Equality to o, he mult needs compare thofe of Minority, to leffe than nothing. Whereas had the arighr apprehended the nature of Proportion, and derived it from the Quocient, not the Remainder; he would have found that though the differenee of Equals be Nothing, becaufe $\mathrm{A}-\mathrm{A}=0$; yet their Proportion is Single (nor Nullecxple) becaure A) A (1. And, of the Lefle to the Greater, though the Exceife be Negative or leffe than norhing, becaufe 1 -2 $=-1$; yer the Proportion is Poitive, and denominated by a Polirive quantiry, but leffe then I; Nor, a Negative : Becaufe 2) I ($\frac{1}{2}$. Which CMerfennus, and he, not well obferving, take the proportion of Equality, for No-qwamicy; and CMinority, for a Negative, or Privative quanticy. As if, the double, were indeed fomethivg; but the Egual, Nothing; and the Half, Leffe than nothing. ".

Nor doth it at all help the matrer, to tell us, that by Ration he doth not mean a Concrete, (the Double, the Equall, the Half;) but the Abfract, or (as he calls it) the A i of differing. For (befide that his words will not bear this Evarion ; Ratio conffitit in Differentia, boc eft in ea parte majoris quá minus ab eo fuperatwr; where ca pars majooric, cannor be the idll of differing, but che abfolure quantity by which they differ;) if this Evafion be allowed him, it amouncts to no more but this, That to be the double, is fomething, (a Pofitive Ration or Relation :s) to be equalt, is Nothing, (No Relacion;) so be Half, is fo far from being fonething, :that it is not So-much as Nothing : Which I am content to admit for: Half an Anfiver;' and Mr. Hobs for Halfa Geomerricián.

Anorhet Scriple I meet with pag. 91. where I am to give a Reafon why I do (in Gieometrical P.rogreffion) make ufe of the Letter R, to defign the Exponent of the comation Ration; Which Mr. Hobs chinks hould racher be defigued by M, the firt Letter of Maktiple. (A profound Inquiry! I. shat of Some, Why Homer chofe to begin his Ilicados
with m.) I might tell you (were it fit to dectain you upon trifles) Thar (as himelf tels us, pag. 90.) this exponent, which he calls M, is Radix (of which the feverall Powers some furceffively to be confidered) and might, upon that uccount, be fitly defigned by R, the firlt letier of Redix, as pell as by M, the firfl letter of Cicxltiplier. Next, that Geomerricall Progreffion, is defined, nor by a Cemmmox MLultiplicator, bur, by a Continued Ration : and therefore R, a fitter Letter then M, to defign the exponent of that Ration. That Geometricall Progreffion maay be carried on, aicording to any Ration whatfoever, as well as the Multiple: and therefore fitter to be defigned by R, than $M_{\text {; (and it, Was nor fit to feducs my Reader, as he fpeakes, }}$ or, by the letter M, to make him think there can be no $0-$ ther Geomerricall Progreffion, bur in Multiple proportion.) And had I (as be would now have me) defigned it by M; I hould then have been thus caxed on another accounr; What ? Is there no Progreffion Geometicall, but only in UKultiple Proportion? Are not $8,4,2,1$, and $8,12,18$, 27, in Geometrical Progreffion? Yer the Profortion is in that, Sxbmultiple; in this, Sefquia'ter ; not CMwlriple in either. Nexe, that this Common Ration, may as well be concinued by Divifion, as Malciplication; (and 8,4, 2,1, as properly faid to proceed by a conrinued-Divifion by 2, as by a continued Multiplicacion by $\frac{1}{2}$;) : and therefore R more proper than either. Mor D. Nexr, chat I was an the fame time to make ufe of M_{f} (upon anorber account) for a cliddle- prapartionall; and D , for Difance; and therefore R was more at leifure, to defigne the Expenent, of the Common Ration; (And I chofe thar trather than ε, becaufe \mathcal{E} is mader ufe of for she Cammon Exceff, in Arithmericall Progreffion, which I was not 4talling to confound wish the Common Ration, in Geomerricall Progreffion, though.Mr. Hobs think, they both confift in the Differencei.) But ((becaure I doe niot think my folfobliged to alfigne a Reafon, why I make ufe of, this or that Symbol, more
than Euctide or Mr. Hobs, why this or that Line or Point, in a Scheme, is de(igned by this or that Lerter;) Ifhall notinfilt on any of thofe Reafons. And, thar 1 be not charged with Deuble de leading, (a faulc in Laiv, chough not in Mas chematicites, I fball affigne but this one; That; beingat liberty to ufe what Symbol I pleafed, I chofe to make uie of E : And Mr. Hobs hath the Sxme tiberty to make ufe of M, or H, or what he pleare.

But as \bar{I} did not affigne a Reaion why I made ufe of 1 , fo; neither hash Mr. Hobs affigned all the Reafons why the mighe make choife of M, to defign the Exponeat of this Common Ration. For, (befides whathe intimates,) there be fone ocher weighty Reafons, why it was fic he Inould change my R inco his M.

Firlt, becaufe pay. 90, we are thus taught to find this M: Divide the Second terns by the Firft, and the Qxoticint is M; whichtherefore he murt nor call, the Exponent of the Common Ration; (left it might be thought that Ration do pended on the Quotiext;) but, the Comsmon Mulciplicer; which doth a licule betcer difguife the bufineffe, than if he had defigned icby R, and rold us in expreffe words, that the Ratricus mest to be found by Drvifion.

Secendly; because he undertakes (in the fame place) 0 give a: New why (from what I had given) for finding on any tem in the Progreffion; fippofe, the Fifth; whiA is (herolls u's) MMM:M A: (fuppofing Ato be the fint term, and Mxhe Common Multiplier, or the Exponent of she Comnoion Ration.) Now becaure 1 had faidit itas $A R^{s}$ that is AR R'R.R; if he thould havererained the letter R. it might trave heets thought bis' Rute was but the fame with mine 3 . (forthee traffpofing of zeocthe lat place, which I fee firt, fould farce bave made ieppife for a newi Invention :) Bur, eranfpolirig of \mathbf{A},and changing thie Sym: bol Riinto: M; makes the Invention porfectly Netv.

Lafty, becaufd he is by and by ($p .93$, giy)eo fursilhia difcourfe of two Inges, berweenThemand anda;abous what
may be the meaning of $A R^{*} \imath^{\text {and }}$, in fine, not to be ab to undertand it:where as if (wichour fubtituting M for R he had himelf defigned the fame quancity by kR R R A thar is $R^{4} A$, it would bave been thought fo much the fam with my $\boldsymbol{A} \mathbf{R}^{4}$, that he might have beep fufpetted not t have been fo much an Ignorapt, as be would be though to be.

- Twas Prudence therefore, for thele Reafons, to mak that Change, but (becaufe, Artificis eft, celare artem, no to cell us the Reafons.

But whether it be Prudence to defign the Handredt place by Ninet-n-nine M's with A at the end, (as he direct pag. 90.) rather by $\mathrm{M}^{\prime \prime} \mathrm{A}$ or $A \mathrm{R}^{\prime \prime}$, (a defignation com mon enough, though he will pretend not to underftand it I cannot tell ; unleffe it be to make good what he tells u mg. 62, that Symbels are not fborter than words at length.

Another difficuilty Thomas meets with, pag. 86, which Hobs cannot refolve, becaufe he is Artis $M_{n j c}$ ce imperitue (And had not both been" arboo, it had been no difficulty. That, in Proportions, the Double in compapxyded of the $S_{e} f$ quialter and Sefquitertian, Thomas doth underfand, (favins that he canaoc tell how, by Double, to undertand that o 2 to 1.) And, That the compousd of Diapente and Dietteßa. ron is Diapalon, Hobs doth inform him: (that a Fifth anc a Foutth, in Mufick, do make an Eigbt.) But, how Thi rCompofition, doth agree mith That, they cap nesither of them xindertand,

I mult not fend him ad Lyram, (becaure he profeffech to (edru* θ) elfe the Divifion of a Chofd, might have taugh aim the truth of it. I Thall only direct him to what hi做riend Meibomive (though againk himfelf) in his Dialogu "fropertions, pag. 190. ciefes out of P tolamy's Harmo.

 diapafon (two Eighes) is is proportion to the Diapente and Diapafon (an Eight and a Fifth) that is, the Quadruple Pro. pertion to the Triple ; as the Diapafon (an Eight) to the Dit perte (a Fifth:) that is, as the Double Proportion to the Sefgui. alter. (For if, of the fame Number be taken the Triple and Quadruple; and again, the Sefquialter and the Double: they make the Sefguitertian Proportion; as mell the Quadruple to the Triple, as the Double to the Sefquialter.) So that by how much the Diapafon (an Eight) is more Confonant then the Diapente(aFifth) by fo much is the Difdiapafon(two Eighr's) more Confonant than the Diapafon and Diapente, (an Eipht and a Fifth.) From whence he may underftand, That Ptolomy was fo much infected with HodiernMathematicks, as to call that of 2 to $1, \lambda 0$ ofoy dernáa $C_{10 y}$, Double propori:on ; and that of 4 to I, Quadruple proportion: That Disdinpafon, in Mufick, is Quadruple proportion; Diapafon, Double proportion ; Diapente, Sefquialter; and, thereFore, Diateflaron, Sefquitertian: That the Diapafon, formpounded of the Diapente and Diateffaron, is the fame wifh the Duple compounded of the Sefquialter and the Sefguitertio an : That Ptolomy (as well as Clavims and I, with othet Hodiern Geometers) did account Proportions to be in the fame proportion with their Exponents ; and, thole Propora cions to be proportionall, whofe Exponents are proportio nall ; (though Mr. Hobs, and his friend Meibomius will not allow it.) Like as but now you heard from Them, that the Sextuple is Double to the Triple; becaufe their Exponents. 6 and 3 , are as 2 to s.
that, befides thar Conspofition of \mathcal{P} roportion already \{poken of, by Multiplication of the Exponents, (as when the Compound of. 2 to 1 , and of 3 to 1 , is that of 6 to 1 ; that is, the Double of the Treble is the Sextuple;) there is another Comwition, by Addition of the Exponents, (as when we fay, the Double and the Treble make the Qxintuple:) Both which Compofitions are very frequent both in Ancient and Modem Cecmeters, (though Mr. Hobs will nor Believe it, ind Meibomius doe not Like it :) And both, by Euclids, arcalled Comppofition ; (That, in Def. 5. lib.6. This, in ${ }_{14}$ Def. lib. 5.) And Mr. Hobs, if he had nor forgor his leffon, would have faid fo too. For he tells us, Leffon p. 8. 'hat the Compofition of Proportion defived in the 14 Definitions fthe sth Book; is not the Same Comppofition which be defineth tht laft definition of the Sixth book. Thus Euclide, Prop.g. ib, 6. Becaufe, One part of a Right Line is Double to the Dher; Concludes, That the Whole is Treble. And why fa, butbecaure the Double and the Single, make the Treble? (like as their Exponents $2+1=3$.) And, Prop. 1. lib. 13. laving proved the Gnomon to be the Quadruple of the Exempr Square, he concludes the Whole to be the Quintuple of it. Why ; bur becaufe the $Q_{\text {uadruple and the Simple make }}$ the Quimtuple ? (like as their Exponents $4+1=5$.) And the like ofr elfevhere. And 'tis that Compofition of TProperion, ouv $\theta_{s} C_{1 s} \lambda_{0}$ zs, which Euclide defines, in the 14. Def. Tthe 5 Book; but different from that defined inthe s th. Jef. of the 6th Book.
'Tis indeed an Inconvenience, that two fo different Nolons fhould, both, be called Compoftion; But 'tis very Incient, and cannot be now helped. (For whatever remety be applyed for the future, yer as tothe Bookes already vritten, Ancient or Modern, that Ambiguity will remain.) Buc 'tis not hard (for one that isvilling) to underfand, in whecher of the two fenfes the word is ufed by fuch ar fuch © Author, in this or that place. (And to remedy the Inopvenience, as much as might be, as to wn ufe of the

Word; I call the one (that of the 6th Book) Compofition by Multiplication of the Exponents; the orher (that of the 5 th Book) Compofition by eA ddition of the Exponents.

Bur Mr. Hobs findes no Inconvenience in it ac all; but makes a grear Advantage of this Ambiguity, Pag. 51, 52 , $53,87,88,116,6 c$. For, by this meanes, whatever is faid of the One, he will be fure to interpret of the Other: and thereby furnish matter of difcourfe for Thomas and Hebs, to thew, That it is not true in that fenfe wherein it was never intended. And whecher I fay, Compofition by Addition, or Compofition by Multiplication, (the termes whereby Modern Writers ufe to diftinguifh thofe two Compofitions,) he takes no notice of that at all. For Atill Compofotion is Compofitiors, And Compoftrion (what ever it bo defined in the g th of Euclide) is in the 6th of Euclide defined to be, by a Multiplication of the Quanrities; And this is alfo Addition; For all Compofition is Addition; for to Adde is to Put together; (It feems he did nor know that Compofition, oivowoss, is a word common to Addition, and Multiplication 3 and that a Number made by the Multiplication of two Numbers, is Numerus compofitus, and fo defined by Euclide, 13 d. 7 . And himfelf p. 52 . and elfewhere, by Quantitas compofita, doth mean the Product of Multiplication.) And to talk of any other Addition or Compofition of Proportions, than that fo defined, is Wallifian and Hodietn, (and thad not Euclide been a Wallifian, he would not have mentioned any other.) Claviss, he confefferh p. 87. did fo fpeak. But he was a Fefuite; and, be took pains for it: I oughe not to follow him, and fo cafily. And by this Artifice he hopes at once to blow up, not odely what I had deliveted abour the tivo Compofitions of Proporition (by Addition and by Multiplication of their Exponents) being the fame with the Addition and Multiplication of Frations ; But my whole Doctrine of Infinites, becaufe 1 there fup-
 mal to Six-pence, or balf a Shilling ; J whereas he thinks, thas the Compound of $\frac{1}{2}$ and $\frac{1}{4}$ mult needs be $\frac{4}{4}$. (Which : furnifhes: difcourfe for fix or feven pages, p. 116, 117 , $118,119,120,121,122$.$) And he Wonders much, That,$
 Dofirive; bur, Robervall lay claims to it (as, he fayth,' his manner is) as an Invention of his, but never publifhed. (Bur if Mr Hobs had been bur half fo good a Marhematician as the worlt of them, he would have found as little fante with it as they did. Yet I fuppofe they do nor Wonder, for 'is no Miracte,nor thing unufuall, to fee Mr Hobs argue at dis rate.)
Bur his friend Meibomiss, (who doth as little Like the Doitrine of Exporents, and this Two-fold Compofition, gec.) Hoch, as to the Antiguity, differ foom him. For whereas Mr Hobs takes it to be Wallifian and Hodiern ; Meibomius (though againlt himfelf) cites to that parpore, of the Greeks, Nichomachus Gerafenus, Heronas, Ptolomy; Porprius, Theon Smyrnaus, Theon Alexandrinus, Eutooius, \&ccand, of the Latines, Redulphus Volumnius, Cardan, Clavius, 8ec. (in his Dialogue of Propartions, pag. 16,17, $22,25,30,39,79,96,99,101,127,129,130,131$, $161,162,165,166,167,172,186,188$, 190, ©た alibi.) dd tells us p. 127 , that thefe moderie eriors (fo Coberent diey are with the doatritie of the Ancients) cannot be refuted, withont firf fhewing, That All Antiguity was ignorant, of whar Mr Hobs and He would have us take for Truths; fviz. Mr Hobs, for Ancient Trurhes which we Hodierns do notunderftand; Meibomius, for Neso Difcoveries, which the Ancients never knews). And whereas Mr Hobs rells us P. 87, that, notwithfanding the authority of Clavius, the comtrary opinion bath obtained : Meibomixss complains p.167, Chat Clavium fecuta eft tota Mathematicorum cohors ad nofira ufgue temppora; And p, 172,173, Tante axthoritatis fuit Clavii opinio, ut banc deinde loguendi formulam owswes Mathematici ufurparimt ; And $p, 127$, that, Cum Theone, Funiores ammes, were of the rame opinion. And $p \cdot 165$

Quod Theo vulté Eutoçius, omninsmque juniorwns Matbo maticornm. filii. But 'tis very poffible, that Mr Hobs. (fo grear an Enemy to reading of Books) might well be Igno rant of all this. But then he fhould (for the fame reafon) have been more fparing in Condemning as Hodiern and Singular, what others know to be fo Ancient, and fo $U_{\text {niver }}$ fally imbraced. (Unleffe he think it a credir, not to have Read any of thofe Authors.)

I fhall not undertake here, to reconcile Meibomius and Mr Hobs, (either each to other, or to themrelves.). But leaving them to agree as they can, thall, before I leave thi: difcourfe of Proportions, give You this Brief Accounc ol what hath been more at large difcourfed.

That Homsogencous Qmantities, (or $_{\text {Qnanta }}$; fo: I meat it, with Mathematicians, of the Concretes; not, as in Metaphyficks, of the eAbftracts ; I I call, (with Euclid). Thofe which may, each of them, be fo maltiplied as to exxeed the other." Thofe which cannor, (as Line, and Time,) call Heterogeneous each to other.

That fuch Homogeneons Quantities, are wont to be Com. 'pared; As to their Difference, which is found by Subdutiion ; And, as to their Ration or Proportion, (Geometricall, I mean; not that which is called Arithmeticall, which is found by Divifion. The Quotient of Diviifon (whether a True Number, or Homogeneous to it,) deffmining the Q wantity of that Proportion; and giving. D nomination toit. (As 2, to the Double ; 3, to the Triplt ; a, to the Subduple; and I (not o) to the Simple, or that of Equals; $\frac{A}{B}$, to that of A to B. o σ_{0}) Which is there fore called the Quantity, the Denominator, or the Exponent of the Proportion.

That Ration or Proportion; is the Relation of two Homo: geneous Quantities, one to the other, confidered as to the Quo. tient of the Antecedent divided by the Confequent.

That, theDesble, the Half, Qxc. are Rations in the Con-
arete ; Doublemeffe, Half-meffe; \&c. Rations in the Abfratt, (and of Metaphyficall rather then Mathematicall confideration ;) and 2 or $\frac{2}{A}, \frac{1}{a}$, $(\mathcal{\sigma} c$. the Exponents of thofe Rations.
That, If the Quotient of one Antecedent divided by its confequent, be Equall to the Quotient of another Antecedent divided by its Confequent; the Roportion of that firf Antecedent to its Confequent, is Equall to the Proportion of this ocher Antecedent to its Confequent: If greater, greater; If leffe, leffe.
That, the Double and the Treble, is the Quintuple;s becaufe $2+3=5$: The Double of the Treble, is the Sextuple; becaufe $2 \times 3=6:$ The Duplicate of the Treble, is the Noncuple ; because $3 \times 3=9$. The firft is a Compea fition of Proportions by Addition of the Exponents: The fecond, a Compofition of Proportions by Multiplication of tbe Exponents : The Third, a Comppofition of Proportions whofe Exponents are Equall, by Multiplication of thofe Equall Exments; (And differs from the fecond, as a Speciall, from aGenerall : viz. a Compofition of Two like proportions, by multiplication of their Exponents, is the Dxplicats ; of Ibre, the Triplicate ; of Four, the Quadruplicate, \&cc. to ree of thofe like Proportions.)
That the firft of thefe is the fameOperation with the $A d$ dition of Fractions ; The Second, the fame with the $M_{n l} l$ tiplication of Fractions; And the Third, the fame with the Squaring, Cubing, \&c.. of Fraetions. All Fractions (Pro per or Improper) being noother than the Exponents of Proportions; Or, the Quotients of the, Antecedents divided by their Confequents.
And with this Account of my Doqtine of Proportions (which I prefume you will not take to be, either fo much Hodiern; or Vnintelligible, as to Mr Hobs it feems,) I will conclude what I have to fay to his fourth Dialogue. For, to my Treatife againt Meibomius, which he would feem there to confider, (that it might not be the. .hr that any
piece of mine pafleth unamivered,) he hath nothing, furrther to except, buit, That the Epiffle is too long, and roo finld of Symbols for bime to undorfixnd, asd that I therein cise zwelve Verfes ont of Homer.

In his Fifth Dialogue he pretends to confute Three ether piecos of mine: That of the Angle of Contait; Of Conick Sotions; and my eAvithmetick of Lrfomitr.

The Refurc of his Confuration amounts to chis. That, in the Firf, I bave demonfermed what was wndertaken; The Seconid, is fo. fiall of Symbols that be canmot noderfand it, (and therefore it may be true for ought he knows;). The Third might be true alfo, if $\frac{1}{3}+\frac{1}{\frac{1}{2}}$ were equal to $\frac{1}{2}$, (a Groat aint wo-Peace, equal to Half a Shilling;) bur, this being abrurd, be Woonders that other good Matbemuxticians fronid comisisend that piece.

The firft of thefe concerns a Controvery between Pulotary and Clavisu, concerning the Angle of Contact.

Euclide had proved, $16 e 3$. That the left Right-lined Angle poffible, is Bigger than that which is called the Angle of Contait: (And it is allowed by all fo to be.) But doth not expreffily fay whether the Angle of Contafl, (as it is called) be indeed an Aingle of any Magnitude.

Peletary is of opinion, That it is not; Nor, that it addes any thing to the Angle of a Semicircle. Bur, rht the Angles of Semicircles, are all equall each to other, and to a freight-lined Right Angle. (That the Angtes EAP, DAP, BAG, aFe all equall each to other, and to the Right Angle EAP. $)$ And, that the Arch AE, and the Tangent AP, as to the Point A, are rather to be confidered as Parallefs, or Coincident's, than fo Inclimedias to make an Angle.

Claviu thinks otherwife. That the Angle of Contact is an Angle of fome Magnitude, thbugh lefie than any poffible freight-lined Angle. That the Angle of the SemiC CAE is nor equall to the Rigbr Angle CAP, but a put thereof; the other part being the Angle of Contact CAP. That CAD; CAE, Angles of Unequall Semicircles, ate unequall ; as alio he Angles of Contact EAP, L
 $D A P, D A G$.
If Now, in that Treatife, Itake Peletary's part againlt Clavios.
And Mr Hobs grants the whole; That the Angle of e Semiciercle CAE is not a Part, but the W/bole, of the Righe Angle CAP. (And he had fayd as mach herecofore, Corp. c. 14.5. 16. An Angle of Contingence if compared mith ans Angle fomply fo carled, which is the prefent cafe, tath fach proportion to it, as a Point bath to a Live; thate is, he fayth, no Proportion at all, nor any Quantity. Though, fince, he hath been much offended with me, for faying A Point bath no Quartity. And, The Angle of Contait, as it is called, No mianitude. 'Tis equall, he fayrb ibidems ${ }^{2}$ a an Angle at the Cen tris made by $A B$ and the fame $A B$; now where the Crura of afuppofed Angte, comefo near as to be coincident; that fuppofed Angle contained by them, mult needs be of no magnitude. And ' T is equall, he fays there, to an Angle mbefe c-1rch:is the fanve point B; that is, I think, to an Angle of $\mathbf{N o}$-magnitude.) That the Angle of Cantact, atds norhing to that of a Somicircle; He, Hillows alfo. And, that Angles of Semicircles are All Equatl, each to other, and to that of a st reight-lined Right Angle. He allows pag.105. That I bave fafficiently demonftrated, that in the Angle of Concact there is no Inclination; Inslinationem in Angulo Contaitus millame effe, fatis quidems densonfivat: (though, in the next page, P .107 , forgetting this conceffion, he affirmes the contrary; Qusin arcus of tangens ad fe inclinentur, dubitart non dobet.) In fumme; He grants, that the Angle of Contruta is not an Angle fiomply fo called, that is, not fuch a thing as Peletary or Clwuive meant by a ' c ; nor, of ony

Magnitude, as compared to fuch an Angle. (\%mp Y Y Ait
Buc had Mr Hots ftayd here, it might have been thought, that fomewhat of mine had not been confuted. And therefore, rather than fay Nothing, he will fay Nothing to the purpofe.

He tells us, that Though it be not that which Euclide (and other Mathematicians after him,) nor what Peletary and Clavius in that Controverfy, call an Axgle ; nor any thing Homogaseous thereunto : (But fo Heterogeneoss, that it is not poffible for one definition to comprebend both, and that it is but an A quivacation to call both by the name Angle, p.40.) Yet, he fays, it is an Angle, that is fuch a thing as He means by Angle, though not what others mean by that Word. (And he migint as well have proved, that A Hor $\int e$ is an Angle: For, if he Mall pleafe firtt to Define, Ther, by Angle he doth nor mean what Euclide calls Angle, but what ochers call Animal; ho may well infer, That A Hor \int e is anAngle, thit is, an Amimal, and of fowse Magnitude.) But was it not a great Errour, that none of us were able to prophecy, In what New Egnivocall fenfe, Mr Hobs was afterwards to ufe the word Angle? and , apply our difcourfe in that Controverfy accordingly?

Now, though it be no more to the purpore, in this Coocroverfy, to talk of Mr Hobs's Argle, than to talk of a Fifhing-hook(for that alfo is called an Angle ; Yet; fince he doth fo importunely intrude it, (for we have it in his Book of Body, Latine and Englifh; In his Leffons at left twice or thrice;and as oft in his Dialogues;)wee'l confider a little, how he doth manage this his NewNotion of Angle.

But firf he finds fault with Euclide, p. 106. that in Defining an Angle, be fpeaks, Vulgi more; which he faies is very Abfurd. (Yet, a while fince he cold us, 'twas very abfurd not to do fo, as you heard before : becanfe' 'tis not tbe Work of a Mathematician, to determine, what foull be thus
'led; "is the woork of the Vulgar to impo(e Names.)

He thinks when Euclide faies that Two forcight lime conteine an Angle, that he takes an Angle to bs a Superficies: (For Exclide cells us, 4 xioms 10, that Two fireight line Cannot contain a Superfacies.) It feems when Mr Hoks dot rofpeak (and he doth fo fpeak very ofren) he takes an An' gle fo to be.

He is then of opinion, That two lines may make a Angle though they never meet; For fear lefth if he fhoulf fay, (with Emclide and orhers,) that an Angle is made by th concour fe of two lines, he mult fay alfo, that two Points, tha' is, two Notbings make an Angle: (For he had heretofor told us, that A Point hath no Proportion to a Line, nor ant Quantitic at all, Corp. cap. 14. 1 16. And again, rap. 15
 inter Numeres Cipbra; Ihat, As a Cipher in Numbers, fo a Point in Quantities, is Notbing. Though he will not allowt me to fay, that el Point hath no CMagnitude.)
To the Argumene, Thar, If the Angle of Contact. be Lefer Quastitic, and the Right Angle a Bigger; (Tkat, Part; This, the Whole :) Then that may be (o moltiplied a so excred this, (by $5 d$, and 1 e 10 .) When Clavisus excepts. that the Argument doth nor hold, becaufe the Quantitie. are Heterogeneous: 'Tis replyed, thar Clavius making the one to be a leffe Quantitic, the otber Bigger; and the one a Part, the other the Whole; he muft, by $3 d 5$. confeffe them to be Homogencous ; and this Whole, if. Homoogeneous to one Part (that of a Semicircle, as is confeffed,) muff therefore be Homogeneous to the Reft, (the Angle of Contact.) Mr Hobs allows all this to be True, but nos a good Argumens againft Clavius.

To another miftake of Claviwn ; when I faid 'twas Ealfe: Mr Hobs confutes me, pag. 109. for nor having faid, that it mans $A b$ furd. (You may think perhaps, that he blames me for having faid too little, thinking that to fay, It is $A b-$ furd, is fomewhat more than to Gay, It is Falf.. But that is Your miftake. He thinks it is too m...t. For Scaliger's

2uadratiere, which makes the 12 fides of a Dadecodgone, reater than the Perimeter of the circumicribed Circle, ie doch, in the fame page, grant wo be Abfurd; yee be naintains it to be True; pag. 142.)
What he faies near, Of Homogensom, making it the ame with what others call Comnsenforable; Of Numbers tot being Homog oneaws fave only when the things Nustared ef fo, \&c. I fay noching now, becaule to this we have fporen already. But we'l come tohis Explication of his New Equivocal notion (iasche callsic) of an Angle. Which I promifed but now, becaufe of his importunity, to take ome notice of. An Anglo of Comtratt, he faies, is an Angle ; and, an Angle of fome Quantitic ; bat its Quantixic HePerogeneous to the: Quantity of a ftreight-lined Angle; this being meafured by a Circular, that, by a Streight line; which ase, he faies, Intongrusent ; and, sherefore, the Quancities, Heterogemeous.
I hall not here mind Your of whar was before maintained by him, that the Quantitic of any thing whatever, to the Onantitic of anyorther whatever, is Hamogencous, not Heterogensons, (which might make it feem Arange, hov, of there two Qwiants, the guantities hould be Hetergeneons:) Nor, that aftreight lixe is by and by to be found Eiqual so a Circular, (and therefore not Hateragoneous:) Bat, fuppofing all this to be forgotren, let us fee what it is be aimes at.
He firf cells Tbomas (and ic is moft true,) That a Circular line is Crooked. And Thomsas doth confefle, It is fa He then rells hirn, that, of Croaked Lines, fawe may be more Crooked thas other. Which Thomas alfo gromrs. He cheuce infers, There be tberefore certain $\mathcal{D}_{\text {egrees }}$ of Crookedmeffe. And Thomas cannot deny it. He then obferves out of Galilee, that An eA rch of a Leffer Circle is more crooked than an Arch equal thereunto in a Greater Circle. Which when Thomass is content to grant, but, doth not underftand; H conicerns tbe Angle of Contact: He tells him,

That by the Guastitic of the Angle of Contald; be menus the Quantitie of Crookedneffe of the Circular lise. (Dic quantitatem Anguli Contaflus, ffe quantitatem (xrvitatis peri metri quans contingit.)
So that, in faying An Angle of Contall is an Axgle o Some Quantitie, or Greatnefle, his meaning is no more, bu that A Circular Line is Crooked: And in faying, An Angl of Contact is of So-much $Q_{\text {waxtitic, }}$, or is S_{0}. Great, hi, meaning is, that A Circular Liw is So Crooked.
Now if this be all he means, 1 think we need nor be difficulc in granting, That a Circular Limo is Crooked, and that it is So-Grooked, that is, that every Circular Line hath a certain degree of Crookedneffe. But how this concerns the Controverfie between Peletary and Clavius, 1 do not underftand : For, 1 think, they did not differ about this point, Whether a Circular Line be Crooked? or, How Crooked ?
But being, through his importunity, gone thus far out of the Way: "ee'l fay a while to conlider, how well beftates this Crookednefe, and the Quantitic of it.
How Shall we knoiv, ho.v great is that Crookedneffe, which he calls the Angle of Contact, as tothis or that Circle? Suppofe, AHL ?
'Tis meafured, he faies, by a Stroight-Line, as fuch, (lima mela quatenus reita, p. 110.) And if we ask, by what freighr-line? He tells us, pag. 41. Angulus castaclus menjuratur per Lineam roctam ductam a Puncto Contaitus ad Circumferentiam. 'Tis meafured, he faites, by a freightlime drawn from the Point of Cartall 20 (fome ocher Poinc of) the Circumference, (for fo, I fuppofe, he would have it fupplyed.) If you ask, To what other Point ? He means ir, I fuppofe, indefinitely, Any other Point. (For he dorh nor determine any.) Such therefore is the line AH, or - AL. (And of fuch lines "tis manifeft he means it, pag. In I and ellewhere.)
But what, mult we fay then ? That she. Croc' affe of

he Arch AH, is equal to the freight line AH ? and, that f the Arch AL to the ftreight-line AL ? and, the Angle f Contad EAP equal to this, or that, or any other $\mu \mathrm{ch}$ line ? Or, if not, What doth he mean in faying AH, ir AL, is the Menfure or the Quantitio, of that Crookedne S_{3}, or Angle?
If you fay, He adds there, The greatneffe the refore of two Angles of Coutact is meafured by a freight line draws from be Point of Contall through Both Circumferences: (fuch juppofe as AFH, of ABL.) 'Tis true hedorh fo adde ; But this doth nor anfiver my Queftion; For I did not isk, How great are Two ; but, How greas is One Angle of Contact? Or, The Curvity of One Arch ? For he faith, Angulus Contacitus, \&c. One Angle is fo meafured.
1 am loth to think he Thould mean (and yet there is no orher meaning obvious, at left as to oneAngle of Contact alone confidered ;) I am lorh, 1 fay, to think he fhould mean, That the Angle of Contact EAP, is equal to the freight
 line AH ; For (befides that it feems not congruous to fay, that an Angle, is equal to a ftreight-line; as the thing Mer fured, is equal to irs Meafure ;) he muft by the fame reafon, fay that the fame Angle is equal alfo to the itreight line AL, or to any other Areight line dravn from A to any point of the Circumference; and confequently, that it is Greater, and $L_{e f f e}$ than it felf. (For, that the Archs HA, and LA, do make the fame angle of Contact with AP, I fuppofe he will not deny.) Nor, That the srookednefof of the Arch AH, is equal to the frreight-line AH; For (befides the feeming Soloccifm) he muft, by the fame Realon fay, that the Crookedneffe of the Arch AL, is equal to the Areight -ine AL: And, confequently, that the Crooked
meffe of the Arch AH, to the Crookedneffe of the Arch AL , is as the jifreight-line AH, to the ftroight-line AL, (as the Chord of that, to the Chord of this,) Which, I think, he cannor in any fenfe affirm. (Or, if he fhould, the concrary will eafily be evinced, from what he grants, p. 111 . That, the Curvitic of like Archs is Equal:: and, therefore, the Curvity of the Uulike Archs, in the fame circle, Proportional to thofee Archs,not to their Chords.) If You an tell any other tolerable fenfe, in which the Poftive (not the Relative) Quantity of One Angle of Contali can be properly faid to be Meafured, by One Streight-line ; You may oblige me by that difcovery.
But, if You would have me leffe Severe as to this Demand ; and to excufe him as to the Angulus Menfuratur, (the Pofitive Magnitude of One Angle of Conract,) if he can but give a good account of his Anguli Menfurantur, (theRelative, or Comparative, Magnitude of two Angles:) lam content foto do.
Yet I muft fay withall, That it is a favour more than we ove him. For, though that which his difcourfe renderh to, be indeed an account of the Comparative greatneffe, or Proportion, of Two Angles; by two Proportional Atreight lines :-Yer 'twas more than he was aware of. Forhe thought he had been determining the Poftive Greatneffe of One Angle ; (and doth pretend to have done it.) And cherefore in his. Leßons (from whence he doth but trans(cribe his Dialogues) pag. 3. After he had given this account of the Angle of Contalt's Pofitive greatneffe; he proceeds to fpeak of the How much Comparativoly, or the Proportion of $T_{\text {wo }}$, one to the other; as quite another thing.
And when we have allowed him this favour, he is not very happy in the managing his Norion; even as to the Comparative greatneffe of two.
For fuppofe we, firf, the Quantity of the Angle of Contas EAP; or of the Curvity of the arch AH, to be defigned
defigned by the Chord AH (as he direets, Dial. p. 4^{I} Axgulus contaciin menfuratur per lineam rectam ductam puinita consactuon ad circuurferemiamo ; and Leff. p. 4. Tb Meafura by which as Angle of Contingence is menfared, is Arreight. line intetceptod berween the poise of Contatt. and wh Circminforence of The (ircle ; that is, I fuppofe, of th 'Sama Circle, not of another:) We are then (by the fam direstions) to defign the Quantity of the Angle of Con wat DAP, (whofe comparative greatneffe to that ocher wo 'are to confider,) by fuch another line fo drawn from the Contact to the circumeference; yer not drawn at pleafure (as that firlt was,) but by AF, a portion of that firft line AH; (for fo we are directed Dial. p.41.) to the end that the Archs AH, AF, may be like Archs.

Now You may expect perthaps, that the Angle of Concact EAP to the Angle of Contact DAP ;or the Curvity of the Arch HA, to that of the Arch FA; fhould be as the Chord HA, to the Chord FA , (the meafure of that, to the Meafure of this:) But
 tis far otherwife. For EAP ; which Mr Hobs will have to be the Leffer Angle ;' and tbe Arch HA, which, he faies, is lefe Crooked ; have sfic Greater Meafure: (The Chord HA being manifeftly greater, than the Chord FA, a part of it felf.) And Mr Hobs himfelf confefferh it, Dial.p.r11. and Lef. P. 3. And therefore he doth nor fay, As the (bord to the Chord, fo the Curvitie to the Curvitie, refpectively, or the Angle of Coytact, to the eAngle of Contact, (Which fhould have been the Proportion, if. thofe had been the Meafures of thefe:) But, As the Chord of the Greator Anch, to the Chord of the Liffer: fo (conitrarywife) the Curvity of the Leffer, to the Cwivitic of the Gretier ; and che Angle of Contact made
by chat, to the Angle of Contact made by chis.
Thole fireight-lines therefore are not the Measures (as he pretends) of the Curyitic of their Respective archs, as to their Pofitive Quantities; Nor yer, as to their Comprative Quantities, the Proportion of Thole, the Medfire of the Proportion of There: (But the Inverfo rather of that Proportion.)
So that, though there be a Truth in that Notion of Galilee (thar Equal Archs are more Crooked in Defer than in Greater Circles;) and none, that I know of, did ever doubt it: Yet Mr Hobs hath (unhappily) fo mif-managed good Notion, as not to Advantage, bur rather Prejudice, himself by it.
But there is yet a greater Mischief: and that which trikes at the Foundation of what Mr Hobs would build upon it. The ching he aimes at, is to prove, That the Angle of Contact, hath a Pofrive Quartitic, but Heterogemans to the Quantity of a freight-lined Angle. (For; unfe Heterogeneous, he grants that ic hath none at all.) Bu, why Heterogeneous ? Bccaufe (he tells us, wag. 110 .) the CMeafure of a Streight-lined Angle is Incongruent with the Measure of an Angle of Contain. But why Incongruant? Because Angulus redilinews non menfuratur per Lim niff Circularem, of quidem quatenus CirculaNim ; menfura autem Anguli Contaltus est Limen Recto quietus recti ; That is, No Live but a Circular can medJury aftreight-lived Angle; and none but a freight line, the Angle of Contact. And upon this foundation lies the whole weight of his Difcourle. (For if either Bork may be meafured by Circular, or both by Streight Lines; he hath then nothing to Say, why; if Quantities, they are not Homogeneous.)
Nov that Areight-lined Angles may be measured by Arch of Circles, (chat is, the Proportion of Angle to Angle, by the Proportion of Arch to Arch;) I grant: (though not by there onelye) But that the Angles of Contact (as he

Speaks) that is, the Curvitie of Archs, (as he explains himrelf,) are. meafured by Streigbt-lines, as $\int x c h$, and by, $\int x c b$ onely; I hall not grant him, nor can he evince. For if, as he affirms, the (Comparative) Curvity of the archs HA, FA, (chat is, the Proportion of thole Curvities, or rather the Inverfe of that Proportion,) be meafured by the (- omparative)Length of their Chords, (that is, by the Proportion of thofe Lengths ;) it will be as much meafured by their Own Lengths. For, fince that like Archs are proportional to their Chords; what ever Proportion is meafured by that of their Cherds will be as much meafured by that of thofe like Archs themfelves, (for 'tis the fame.) They may therefore, as much, be meafured by Circular, as by Streigho Lines. Which deftroges the Foundation of Mr Hobs's Difcourfe. Again, If on the Center A, we fuppoic Two Archs drawn from the points H, F, cutting the Tangent AP, in N,O. Thofe Archs HN, FO, will, as much as HA, FA, their Semi-diameters (becaufe proforrional to them,) meafure the Refpective Angles of Contat EAP, DAP. They may thercfore as much be meafured by the length of Circular, as of Streight Lines: And, Mr Hobs's Hyporhefis comes to nothing.

But (to diftinguif what Mr Hebs would confound) the Angle of Contalt, and the Degrec of Curvitio, are not the fame, but very different things.
${ }^{\prime} T$ is very rrue, which Mr Hobs obferves out of \mathcal{G} alitite, that Arebs of Leffecircles are more Crooked. For, as the fame Quantitie of Hear, in a Leffe Quantitic of Marter,makes a Greater Degree of Heat; or, as we ufe to \{peak, makes the Matter More Hot : So the Same Quantitic of Crookednefs. in a Shorter Lixe, makes a Greater Degret of Crookednets as to each part of it; Or, as we ufe to fpeak, makes the Line more erooked. And therefoee, there being in Like Archs, though Unequal, the Jame Quantitic of Crookedneffe (as Mr Hobs ackno vledgeth, p. II I.) there muft be, in the singter of thofe Like Archs; a Greater Degree of

Crookedneffe : (And the Degrees of Crookedneffe, Reci procal to the Lengths of thore Like Archs.) Pur, whethe we fay,The Proportion of thofe Degrees of Crookedness is Reciprocal to that of their Own Length; or, to that of their Cbords; is all one (fince the Profortion is the famo of Roth ;) and Mr Hobs his conceit, of being meafured by Streigbt, but not by Circular lines, is bur a Fanfy.
Buc the Awgle of Contact, whether of Greater or Leffer Circles, is fitil the fame; that is, of No-Magnitude in either. For, fince that the Angles of Semicircles, CAD, wd CAE, be, by Mr Hebs's ovn grant, Both equal ; and, equal to CAP ; the Angles 1 of Contact DAP, and EAP,
met be likewife equal, and, of. no cMagnitude.
Or thus ; The two Mixt Triangles, $\mathrm{H} 亡 A N$ and FDAO, are Like Figures; For, all the lides of the One, being Like, and Proportional, and in like Pofition, with thofe of the Other; the Figures mult needs be Like: (and Mr Hobs, Iluppofe, will nor deny them fo to be; or, if he fhould, 'is eafily proved from his own grants, by draving the Semidiameters HK, FC ; for then there Triangles will be the Remainders of Like Quadrilaters, abated by Like, Proportional, and Like-fited Sectors; and muft therefore themfelves be Like, Proportional, and Like-fited:) And therefore, (becaufe, in Like Fipures, the Refpective Angles are Equal,) the Angles of Contast EAO, DAO, though of Unequal Circles, are equal Angles.
Or thus. The four Angles of a Square, are equal to four Streight-lined Right Angles. Now, if in the Square $A B C D$, be infcribed $A B D$ the quadrant of a Circle; inflead of thofe Four, we have Six Angles (if thofe of $C_{\text {ontact }}$
be reckoned for Angles,) equal to thore Four ; Thore of the Quadrant at E and F, Mr Hobs grants to be equal co Two Areight-lined Kight Angles; and chofeax A and C , are avo more: So that the Angles of Contact, at G and H , ftand for Nothing, or Angles of no Magnitude. (I mean ; If, by Angle, Mr Hobs mean thar which Others call an Angle; and, by clagnitude, what they call Magnitude. But if he lilt to Equivorate, or to give Nick-
 names ; they mult be what he will pleare to call them. And, if by Angle, he mean as Arch ; and, by Magnitude, Crookedneffe ; ic is confeffed, That an Arch is (rooked.)

I have deceined You too long in this Digreffionconcerning Crookednefe; which, shough not appertaining to the bufineffe in hand, the Importunity of Mr Hobs would needs put us upon. Otherwife, I need not have faid more to what he faies of my Treatife concerning the Angle of Contact ; but, that he grants all that I undertook to prove.

To my Treatife of Conick Sections, 'tis verylittle be hath to fay, and will be fatisfied with as fhort an Arfiwer.

When I fay that, according to the (now-received) Doctrine of Indivifibles; A Plain Pigure is fuppofed to confff of Irfinite Parallels, or Parallelograms of Egual Altitwde; (and, in what fenfe, I had there fhewed plain enough, beyond a pofibility of miftake :) He will, by Infinite, underfand Ixfinitely \mathcal{G} reat: (For, fince that Infonite, in the Plural, doth fomerime fignifie, inginitely Many; and fome time, infinitely Great ; Becaure he knew I meant the One, he thinks it a piece of Wit to interpret it of the Other.) Then - tead of \mathcal{E} guc-atios, he chinks fic to read $\mathcal{E q u a -}$
libun, and difcourfe uponit ; (For want of Spectacles, I fuppole; not, with a defign to Fallifie.) Then, he is no:pleafed that I hould fay, An Aliguote part infinitely fmalls; For Aliquot fupporeth a Number, which Infinite excludes. (Yer he had jult before blamed me for nor raying numero infunita : And he had faid himfelf, in the page foregoing, p.III. in partes Totidem, gwe funt mumero Infinita: It feems that ivfinite nuwsero, may be totidem, but nos tos grot, much leffe aliguot.) Then, he is of opinion, That if ve fuppole any Quanticy, how big foever, to be divided into an lnfinite number of parts infinitely imall ; the Aggregate of all thofe parts is Equall to Nothing. (He doch not know, it feems, that an Aggregate of all the parts, whether few or many, is equal to the Whole.)
Next, he thinks I fhould have proved here; And, pag. 155, I 56 , that I fhould have inferred elfe-where; That, the Surface of a Cone, is, to the Surface of a Cylinder of the fare Bafe and Altitude ; as 1; to 2. But I am not of his opinion; For, the Propofition being Falle, ought not to be Proved, or Inferred, in either place. And the Reafon why I did ir nor, is, becaufe I do not love to argue like Mr Hobs. Nor do 1 think with him; that the Swrface of eicher Cone or Cylinder, (more than the Perimeter of a Triangle or Parallelogram, is determined by the Bafe and Altstude; (though indeed the Content be both there and here fo determined :) For, the Bafe and Altitude remaining the fame, there may be yet infinite varieties of Surface there; and of Perisseter, here: (as none, but Mr Hobs, can be ignorant.) But, if, for Altitade, he pur Latus; the Propofition will thus be true (and might have been af firmed in either place, though it were not neceffary If to be,) viz. The Surface of an (Erect) Cone, is, to th Surface of Any Cylinder of the fanse Bafe and Latius, as $t 02$.

Then he fuggefts a Limitation to my tenth Propofition sif it were not orherwife true. But 'tis hi miftake. Th
ropofition needs it not. For the Section mentioned withour his limitation) can be no other but Parabolical. All Sections of a Parabolical Pyramidocid, made by Plains lying in the Axis (though not paffing by oppofite ngles of the Bare) are Semi-parabola's, (whore common Vertex and Diamerer, are the fame with thofe of the Pyamidoeid,) but of different breadsh according to their lifferent pofitions.
He then tells me, (as though I had not known it,) That he Cuness in my eleventh Propofition is (be thinks,) a Prifme. But 'tis no news, for I had firft told it him at the ame place. For it is there called Caneus five Prifma.
He then fays, that there may be taken (and, doubtleffe, there may) in the Diameter of a Parabola,' (yes, or in any other Atreight-line what-ever, if but long enough,) a Areight-line equall to the Parameter or Latus-reCtum. (But ne fhould have fhewed, That it camnot be any where elfe; f he would have proved, what he aims at, 'That the Pofiion of the Parameter is as much determined, as the Length.)
The reft he fumms up, with this generall Confutation, Tis full of Symbols; And, He cannot underfand it. (Which I Thall eafily grant.)
I have repeated ro you thefe particulars; Not, becaufe think they deferved an Anfwer, (for whofoever confults he places to which they refer, will fee them to be but Cavills ;) But, that You might thereby fee, What kind Difcourfe it is, which Mr Hobs accounts a Confutaion.

To my next Treatife, The Arithmetick of Infinites,(chough hat mult be confuted too, He hath yet leffe to fay. For befide that he cannot Uriderftand, how $\frac{1}{2}$ can be équall to $+\frac{\pi}{6}$; of which we have fpoken allieady ;) in is but his.
7. irf Propofition, he fayth, is True. The Second,
he laych, is tbe Sawe with the Firft; and, Therefore, Falle. (A good Confequence ! Yet Lef. p. 46. he fayth, that Both are True.) But, to prove it falle, he, will take anotber timp.

Heis, next, of Opinion, that there cannor be fuppofed an infinite number of terms continually increafing, unleffe the Greateft be Infinite. (And yet he dorh at the fame time allow, That, in a Triangle, chere are an infinite number of parallel lines fo increafing, of which the Greareft is the Bate.)
He then fayth, That my Fifth Propofition, (wich its Confequents,) I do, at the thirteenth, Confeffe to be falfe. But, if you consult the place, you will find no fuch Confeffion. The Propofirion istrue, with all its Confequents : fo underfood, as he knows it was intended. And his Cavils againtt is in his Iefforis, have been abundantly anfwered; Due Correction, pag. 44.
At length, He Wonders; Why Hugenius, Schooten, Rebervall, \&c. Should commend my Mathematicks, when as never any Mathematician commended His? (The reafon is, Becaufe His, and Mine, are nor alike.)
His Univer $\int a l l$ Demonftration, as he calls it, p. 123, is not morth the Confuting. Yer, becaufe it dorh not concern my felf, I am content that Mr Hobs may believe it is a good one. Onely I have therein taken notice of one Advantage of Mr Hobs his writing Dialogue-wife, more than I did obferve before. For, by this means, when Hobs hath occafion to A/fume what he cannot Prove, Thomas can by a Manifeftum of, fave him the trouble of attempting a Demonftration. And when the Demonftration attempted doth not fucceed, be can relieve him, with a Claritudinem per $\int 0$ tantams habet, Fere, ut poffit baberi pro Axiomate.

I have now done with his Five firft Dialogues. Which are but his Leffous put into a news Drefe: And therefore do not indeed need an Anfwer: But were Anfwered before they were written.

His Sixtb Dialogac is indeed moft of it New, but doch little concern me; (as nor being directed againft auy thing of mine;) But contains a new Effort, of his former Defperate Adventure, of Squaring the Circle. (For, it feems, His own Matbematicks, need Emendation.)

How many Quadratures, firft and laft, Mr Hobs hath furniht us with; I cannot prefently tell You. But that chey are all true, and all the fame, I fuppofe he would have us beleeve. For though he have formerly confeffed fome of them to be miftakes; yet he hath now revoked thofe confeffions, and thinks them to be true. pag. 149, 150, $159,8 \mathrm{c}$.

His Firft Quadrature, Corp. cap. 20. p. 169, (as firlt printed,) or p: 170, (as afterwatds) fuppofing the Radius 1. 00000,00 , makes the Perimeter $6.28385,11$, proxime. (as I have computed it for him, Elensh. p. 102. ace cording to his Conftruction.) Whereas its true greatneffe is more than $6.28318,53$, but leffe than $6.28318,54$ as hath, by divers, been demonftrated.

His Secoxd Quadrature (though he pretend it to be the rame) ibidem p. 171 . (as firft printed) makes the Perimeter (as he computes it by the Table of Sines) to be $6.28317,60$; or (more accurately) $6.38317,65$, fere. The former made the Perimeter too big; This, $\mathbf{0 0 0}$ little.
Inftead of thefe Two (which he takes to be the fame) we have pag. 170, (as reprinted) an Epitome of the Firft, but confefled to be falle: For which therefore he there fubfitutes 2 Third, pag. 171; đ̛c.
This. Third Qpadrature prerends noc to an Accuratè, but onely a $Q_{\text {unmo-proxime. (Nor is that, Truly perform- }}$ ed; as we have fliewed Elench. pag. 119.) nor doch he there conclude of any certain Proportion.
A Fourth Quadrature he gives us, ibid. p. 174,175,176. But, in the Confruction, requires, as a neceffary PoftulaThat we firft know hoiv to take a Streigbt lime equal
ts a Sixth parl of the Perimeter: Wishour which, he can conclude nothing. And this alfo, pag, 181. is given for loft, as well as the three former.
A Fifth we have in his Ewglifh Edition, p. 214. The refult of which (reduced to Numbers) makes the Perimeres to be more than $6,28384,93$. which is too big.
A Sixth,ibidem, p. 22 I. Which, though with him it paffe for one, You may call as many as You pleafe. For the Proportion varies, according as the Arch varies to which he applies his Rule ; (which, he fays, may be any Arch not exceeding a Quadrant.) As for example. If he apply his Rule to an Arch of 90 Degrees; the Perimerer will be more than $6.54353,39$. If, to an Arch of 60 Degrees; it makes the Perimeter $6.42070,44$, proxime. (Both very much too big.) And a like váriety in other Arches.

A Seventh there is, at left attempted, ibid. p. 223. But in comes to no orher iflue, but this, He thinks, and, is almoft out of doubt, but cannot demonftrate; that fuch a Atreight Line is equall to fuch an Arch; and will therefore leave it to be further fearched into.'
An Eigbth, we have in his Lefons, p. 52. Where, presending to make good his Firt, he gives us anotber infead of it. It differs from the firft, in this, That the firft, determining a particular Arch, (viz. BI an Arch of 30 Degrees,) did thereby ar left determine fome Proportion (though not the right, as was fayd before:) But This, nor decermining the Arch BI otherwife than that it be leffe thauthe Radius ; leaves us at liberty to choofe any fuch Arch : and fo leaves the Proportion at as great uncertainty, as in the Sixth Quadrature. And fo, infead o On $_{n}$ Quadrature, it gives you (either None at all, or as Many as You pleafe. For, as the Arch varies, the Pro portion varies too. As for example. If the Arch BI be 30 Degrees; Suppoling the Radim 1,00000 ; the Perime ter will be more than 6,28385 ; If the $\mathrm{A}^{\text {r.h }} \mathrm{BI}$, be I

106

degrees; the Psrimeter, will be 6.283 29. proxime. Both, too big. And the like variety in other Archs.

The four firlt of thefe I have at large confuted Elench.p. 97. \&2c. the latter four I have anfwered Sufficiently (though not to Largely) Correction, p.' 127, 128, and Difpumit. p. 11, 12. and Thewed them to be all Falife, But Mr Hobs doth not think fit to take any notice of that at all: And therefore tells Thowicas, Dialog. p. 149, 1 so, that Tacent adverfarii ; and thence concludes, thofe Qurdratures to be all True, and all the Same, with what be there delivers in his fixth Dialogue. But I Thall not therefore think it neceffary, to Confute them over again: Nor yet to fpend much time on thofe that follow, in his Dialogues.

His Ninth Quadrature, Dial. p. s42. concludes (with Fofeph Scaliger) that Perimeter poteftodecem diametws: Which, fuppoling the Radius $1.00000,00$. makes the Peremiter, more than $6.32455,53$; (which is, indeed, leffethan $6.28,318,54$.) ' Tis, he confeffeth, inconfifient with what Archimsedes pretends to demoniltrate; and, after him, Clavius againft Scaliger: Yee isould not have Thi mas, thereupon, difcouraged; becaule he hopes to con fute them all. And tells us, that, if he do not cloarly Demonfleate to hive (and 'tis a great atrempt) Arithmericus Cyclometras omsnes bac in re deceptos effe, he will give him leave to think as Clavius and otbers da; and, to Jpeak bis pleafure.

The grand miftake (for I do not intend to trouble you with all the leffer faults) in the long proceffe of this Quadrature, lyes in the twenty fifth Propofition, (which is it felf Falfe, and the rhree which follow it.) His Qued of impoffibile, in the Demonltration, is a miftake.: And his proof of it, is wholly inconfequent; viz, Nam, $54 m$ fit, ut arcus ef ad rectami i μ, id eff, ad arcumen n?, ita arcus n? ad rectain or ; media proportionalis inter arcum \& θ of rectans or, érit ea "- Ta qua media eft inter ime or. That is, Bocanfe
©f, is to $\mu \mu=1$, as $n \zeta$ to σT; Therefore, the Mean-proportionall between e θ and $\sigma \tau$ will be the fame with the Mean-proportionall between 4μ and σ. Which confequence is fo groffe, that it needs no Confutation. He Thould rather have concluded, therefore the Mean-propertionall between et and or is i\} or $\mu \mu$; which is no Inconvenience at all, and therefore doth not prove the Suppofition Impoffible.

You might think perhaps (to help falve the Confequeniee) that he might have, before, fomewhere proved, that in\} is a mean-proportionall bet ween $\mu \mu$ and $\sigma \tau$: But there is no fuch thing any where proved, or.fo much as mentioned, fave onely in the words cited.

Again in the Demonftration of Prop. 26. thofe words lin. 1 5. Epit ergo ut $\frac{1}{2}$ Radius ad arcums fg ita $\frac{1}{2} Z$ ad. arcums ξo; are nor proved ac all (unlefte he, fuppofe that they follow from the precedent propofition, which is it felfe falfe :) nor are they true. 'Tis true, that the Atreightline $\chi \psi$ bears fuch proportion to the Arch ξ_{ω}; bue, that $\chi \psi$ is the fame with $\frac{s_{2}}{} Z$ or equall to it, is not true ; nor, what depends upon this fuppofition.

And therefore this ninth Quadrature (prop. 27.) which depends upon the truth of thofe two, prop. 25,26 , is falfe dfo. Nor is it confiltent with what eArchimedes demonAtates, as himielf confeiferh.
He doth then, from this Quadrature, (how truly, I will not difpute) infer prop. 28. (which he thinks to be a Confirmation of it, I Inould rather call it a Confuration,) Thar, the Radius together with the Tangent of 30 degrees, are equall to BF ; (whofe Square, he fayth, is equall to 10 Squares of the Semiradius.) Wee'l try.

Suppore the Radim to be
BF will then be
The fine of 30 degrees
The fine of its Complement, $\quad R_{\sqrt{2}} \frac{3}{4}$, or $\frac{1}{2} R \sqrt{3} .^{\circ}$
Therefore, As $\frac{1}{2} \sqrt{ } 3$, to $\frac{1}{2} ;$ fo is R to $\} \frac{1}{\sqrt{3}} R$, or $\frac{1}{3} R \sqrt{3}$.
the Tangenr of 30 degrees

But this Tangent added to the Radius, (fayth Mr Hobs) is equal to BF ; that is $\mathrm{IR} \pm \frac{2}{3} R \sqrt{3}=\frac{2}{2} \mathrm{R} \sqrt{10}$. (An Irrasionall line equal to a Rationall.) Which is the refult of his Quadrature. But whetherit Confirm or Confute it, I Ghall leave to you to judge.

His Tenth Quadrature, fuppofing the Radius to be 1,00000, makes the Perimeter more than 6,30940, (which is, in truch, leffe than 6,28319 .) For fo much is the Quadruple of BF, a line which is to the Radius, as $\sqrt{3}+1$, to $\sqrt{3}$. For, by conftruction, as $X A=R \sqrt{3}$, to $\mathrm{AD}=\mathrm{R}$, fo is $\mathrm{XAB}=\mathrm{R} \sqrt{ } 3^{+R}$, to BF : which Mr Hobs tells us, prop. 39, is equal to the Arch of a Quadrant.

The grand miftake of this Quadrature lyes in Prop. 34, 35. For having prep. 33. taken BLa, double to BI.; he doth prop. 34. take for granted (which he Chould have proved) that the Point a byech in the line XDF : wheress, indeed, it lyeth beyond that line ; and, confequently, the line ad lyeth not in the line XDF as he fuppofeth; nor is XD a part of λa, but parallel to it ; therefore the point λ falls not upon X, as he would prove, but fomewhat below it: nor doth the line an come at all at D, nor the line DF come at all at a. So that his pretended Demorfration, which fuppofeth all thefe things, comes to nothing.

And that which follows, prop. 35 . hews onely how good Mr Hobs is at Adding Surd Numbers. For he there affirms that Retta qua poteft Tres Semiradios, af fwmpta guarta parte Diagonalis (five Subtenfa graduums 90,) terit Sex Semiradios. That is $\frac{3}{2} R \sqrt{3}+\frac{1}{4} R \sqrt{2}=\frac{1}{2} R \sqrt{6}$, (an Irrationnall Liise equal to a Rational; as once we had be fore.) Yet this be undertakes to demonfrate too. But, in the Demonitration, his Oxod est abfurdwws, is a miftake. Aud, what he brings to prove it, For sh st cannoo be parallell, is very True,but is Noching to the parpofe. He fhould have fuvd (to prove what he intends) that sh it cannet be nat this he fays not, nor is it true; and there-
fore no Abfurdity proved in the Suppofition; Nor dorh che line, tr in true conftruction (however Mr Hobs have pleafed to draw it) come at s at all; but, is parallell co bs.

And, prop. 36. which depends on them, is falfe alfo. And what is brought for proof, viz. $\lambda 6$ poteft 24 Semiradios, (that is $R \sqrt{ } 3+R \sqrt{\frac{1}{2}}=\frac{1}{2} R \sqrt{24}$.) is but like the reft.

And prop. 38. is alfo falfe. The Demonftration failes in that claufe pag. I 48. lin. 13. where tis fayd that, the two Arehs defaribed, one by the Radius AB , the other by the Radius no, cut each otber (in medio rectx lms) juft in the midft of the line los; which is not fo. They cut indeed each ocher, bur nor' juft in the middle, but over the middle of that line.

And confequently his Quadrature prop. 39: built upon there Props, falls with them : (Notwichltanding the Approbation which Thomas gives him, p. 149. Abfque $d x$ bio ita eff.eEqualis oft exactiffime.) And therefore he needed not have raken the pains to Apologize p. 149, 1 50. for Retracting his Firtt Quadrature; which both Thomas and Hobs do now beleeve to be True, and the Jame mith this; (though miftaken in boch; 'Tis neither True, nor the Same ;) and that therefore 'twas unadvifedly done to rewact it. 'Twas his Modelty, he tells us, to Jufpect bis own Dowenffratian, rather than Arcbinseder's, when he faw that Both could not confift. But, having now conquered that Modefty, he doubts not to Affert his own for cruth; and, that Arcbinnedes, with all that follow him, were miftaken. And herein, he hath (he tells us) an advantage, even on ver Fofeph Scaliger himfelf; For Scaliger, having once quitted his Quadrature, did never after refumeit ; but Mr Hobs, (a perfón of greater Courage) hath dared (guens abjecerit refwerere) to fivallow a fecond time, what he had once calt up:

Bur having thus triumphed not over Archimedes onely, but Fofoph Scaliger; he proceeds further to fatisfy Tbo-
mas; Who, though be do now no longer doubt bat that Both are true, yer is not fatisfied that the Ninth and Tenth Quadratures do both Agree upon the fame Proportion.

He therefore undertakes to prove, Prop. 40. that BF (which is to the Radius AD, as XAincreafed by the Radius A_{B}, is to the fame XA, whofe fquare by conftrustion is Triple to the Square of the Radius) poteft decem femiradios (is equal in power to Ten fquares of the Somiradius;) that is, that $\frac{\sqrt{3}+i}{\sqrt{3}} R$, or $\left.R\right\}_{3}^{3} R \sqrt{3}$, is Equal to $\frac{1}{2} R \sqrt{ }$ ro. But in
his firf Demonltration of it, his Dividit Ergo, ofc. pag. 150.1 . ult. is no good confequence ; and therefore 'tis not proved that $x g \mu, B Q \xi$, are equal angles ; nor, what he infers from it, that $X_{B}(\doteq R \sqrt{3}+R)$ potef 30 Semiradios, or is equal to $\frac{1}{2} R \sqrt{ } 30$. In his fecond demonftration, his Quare omnes anguli, \&ic. is no good inference.

There be yet tivo Difficulties, pag. I 9 i, 152 . which make Thomas begin to quettion.whether fomewhat be not amiffe in Hobs's Demonltration; ((till Hobs by a Ne metue, delivers him from that fear.) Firt he obferves that the - A rithmetical Calculation doth not agree with his G cometrical proceffe. For whereas he precends to demonftrace that the Square of $B X$, that is, of $R \sqrt{3}+R$, of of ${ }^{\frac{1}{2}} R \sqrt{12}$ $+\frac{1}{2} R \sqrt{4}$, is equal to 30 fquares of $\frac{1}{2} R$ the Semiradius ; tis yer confeffed, that the Product of $\sqrt{12}+\sqrt{ } 4$ mulciplised into it felf produceth indeed fomewhat more than 29, bit leffe than 30 . (And the like in fome other calculations.) Next, he thinks it to be an inconvenience, that the ftreight line X $\mathrm{X} \dot{\sigma}$, Should $C_{s t}$ at σ, and Toucb at τ, the fame Circle.

Now becaufe it is very poffible that your felf may doubt, as well as Thomas, that Hobs's Demonffration (attended with theie two Inconveniences) may nor be every way Exact; I hall give you his own Anfiver; (For, 1 doubt, none bat himielf can anfiver thofe ObjeAions.)

He tells him, therefore, It is but a ponloia, a bewitching farty that poffefferh fome men (who know not how to :How a Point or Line, bignefle and breadth enough) to tink tha. (Mr Hobs's) Geometrical Demonftrations, ought wabide the Telf of an Arithmetical Calculation. But he math a suvualíp In teable to ftand. His Lines, be rells him, are nor like the lines of other men, (things of no Breadth or Thicknefs,) but carry fome Breadth with them: So that while the humr-fide of his Line Cuts the Circle at σ, the Outer-fide of it,Touches the fame Circle at 7 : For fo he rells us, pag. $5 \mathbf{5 2}$, 154. Eadem ergo recta tanget circulum exndem in π, |ecabit in σ. Which woulc' be Abfurd, he faith, had noc the Line fome Breadth. Non eff ergo secta Xot Jine latitudine, per ǵuam pofIt latme e'us exterius Circulum 'I angere, (犬゙ latus interius Secare eundem Circulsm. ' Tis, he confeffeth, res Mira, Stupenda, Prodigiofa, Nay more; Acütifirma quidem Wed tamenVera ; and 'cis a truth quam Primus docuit nos Hubius ; (he might have faid Solus:) the Ignorance of mich Prodigions Truth, was the caufe, he tells us, why Hr smius, Schooren, Roberval, \&c. did not difcern thofe errors in my Wricings, which Mr Hobs thinks he hath difcoreved.
IThall not detein You in reciting the Confequences which He doth infer from it, That the Tangent of a mall Arch, may be leffe than the Arch it felf, pag. I 54 , (and confequently, The Perimeter of a Circumfcribed Polygon, Lefie than the Circumference of the Inicribed Circle:) That eArchimedes was miffaken, in confining the Proportion of the Circumference to the Diameter, witbin the Limits by bins afigned, p. 155 . That Geometers bave been all miftaken in Computing the Canon of Sines, Tangents, and Secants ; pag. 156. (With others of the like import.). Becaufe You will ealily believe, that this Difcovery muft needs be attended with a Numerous train of fuch Confequences.

But I am now \{atisfied, that it was neceffary for 1 R Hobs, whatever ocher men do, to allow his Points form. Bigmofe, and his Limes fome Breadeh ;'(Becaufe,otherwifehis Paralogifms would never paffe for Demonftrations. For he that hoors at Random, if his Mark be nor fomewhat Large, is not like to Hit it. I' Thall onely defire him by the Next, to telt me How mucb Bieadth will ferve his turn. For, if his Lines be not Broader than Cheap-fide; I will undertake yet to demonftrate, that, notwichitanding this allowance, bis Quadratures will not hold.

His Eleventh Quadrature (which yet remains) is indeed (though the Tenth be not) as to the Proportion of the Radims to the Perimeter, the fame with the Ninth: © Which is a Wonder ; for hitherio we have not had any Two agree upon the fame Proportion.) But prop-43. and 44. (on which it depends) are borh falfe.

The Demonltration of the former, concludes pag. 157. lin, wlt. Quare arcus op of recta AO funt imer fe 1 主quales, at or arcus hi of reCla BQ. (Which was indeed to be proved, butidotb not follow from the premiffes.) Whereas all ruar can be inferred is this, That, The Arch op to the ftreight line AO, is (not Egual, but) in the fame Propertion, as the Arcb hi to the flreight-line BQ.

In the Confectary hereof, he aflumes gratis, That the Right-line wh is equal to the Arch op. Or, if he fuppofe this to follow from prop. 24. We have found that fatfe already.

And prop. 44. depends on prop. 43. (for it affumes from thence, that the frreight-line AO, is equal to the Arcb of a Quadraxt whofo Redius is $\mathrm{BQ}:)$ and therefore falls with it.
If theie Quadratures be nor enough ; be gives us (unaivares) 2 Twolfth Quadracure (to make up the Dozain) prop. 45. (chough he take it to be but a Confirmation of the Tench.) His Tenth Quadrature, draving XF by ${ }^{2}$ certain Point D,did determine a certrenin Proportion, (which

What it is, you have heard already) of the Radims to the Perrimeter. Lut no v, drawing $X \beta$ by γ, any Point taken at pleifure in the Arch BL, he determines no proportion at all; but as the Point varies, fo the Proportion varies too, I'le give but an inftance or two.
Firft, fuppoie γ at L, and therefore δ at 6 . Then, As $X A b=R \sqrt{3}+R \sqrt{\frac{1}{2}}$, to $6 L=R \sqrt{\frac{1}{2}}$, fo is $X A B=R \sqrt{ } \cdot 3+R$, to $B \beta=\frac{\sqrt{2}+1}{\sqrt{6}+1} R$; which, he aith, is equal to $B \gamma$, that is W, the Semiquadrantal Arch ; And therefore $\frac{\sqrt{3}+1}{\sqrt{6+1}} 8 R$, tothe whole Perimeter.
Again, fuppofe, γ at S, and therefore δ at e. Then, As $X A_{e}=R \sqrt{3+\frac{1}{2} R \sqrt{3}=\frac{3}{3} R \sqrt{3} \text {, to e } S=\frac{1}{2} R \text {, fo is } X A B}$
 By, that is BS, an Arch of 30° degrees; And therefore $\frac{\sqrt{3+1}}{\sqrt{3}}+R$, to the whole Perimerer. (Which is the cafe of the Tenth Quadrature.)
Again, Suppofe γ at c, and cherefore δ^{\prime} ar l. Then, As XAl $=$ $\mathrm{R}_{3} 3+\frac{1}{2} \mathrm{R} \sqrt{ }: 2+\sqrt{ } 3:$ ro $\operatorname{lc}=\frac{1}{2} R \sqrt{ }: 2-\sqrt{ } 3:$ fo is $X A B=R \sqrt{ } 3+R$,
 to By , that is Bc , an Arch of 15 degrees; And therefore $\sqrt{3}+1$
$2 \sqrt{3}+\sqrt{: 2}+\sqrt{3}: 24 R \sqrt{ }: 2-\sqrt{3}:$ to the whole Perimeter. And the like variecy in other cafes.
Which if we reduce to Numbers; Suppofing the Radius, 1,00000 . The firf makes the Perimerer, 6,33613 , fere. The fecond, 6, 30940 . The third, 6, 29011 , fere (All, too big.) And every new. Point gives a newPraportion
You have now an account of his Imelve Quadratures an leet, (though the Sixth, Eighth, and Twelfth, which may ftand for as many as You pleafe, paffo bur tor One a piece; and; Howw ell they agree.

And Now (faith Thomas) what will they fay of Hobs, rho bave Reproached him bitberto ? I'le tell You whas they fay. They fay', that Mr Hobs is fuch another Geometrician as $\begin{aligned} & \text { Jofeph Scaliger. And this, I hope, he will not take to be }\end{aligned}$ a Reproach; for pag 75,76 , he accounts it a credit to be joyned with fuch company.

If You would have me now to give You a Particular Confutation of each at large ; You do not confider, Fiff, How grear a Task You pur upon Your felf: For You would be then obliged, in civility, at leatt to Read them over; which were to put You to expenfe of more Patience (in reading the Confutation of fo many weak miftakes, as we mult needs meet with) than the Demonftration of this Profofition, That Mr Hobs is no . Geometer, would be worth: Nor, fecondly, How hard a task You impofe on me. For (befide the expenfe of more time than the Subject doth deferve) it were the fame as to bid me hold an Fel by the Tayle. Quo teneam nodo?

If, by a Confutation, You mean fuch as All but Mr Hobs, would account a Confutation; the Task were eafie; and, ${ }^{\prime}$ Tis done already. But, if fuch as might perfwade Mr
 find me a Footing where to ttand.

For if, firf, I hould fay,' Tis done already; while for fave you the labour of examining all his numerous Propofitions) I have pointed to (fome of) the molt material and fundamental miftakes in the Demonftration of his feveral Quadratures ; and, fhewed you where he takes for prant-* ed what is neither Proved, nor True; (which mol men would take to be a fufficient Confutation of a pretended Demonftration:) He would fay, that 'Tis no Demonftration, eo Deny a Confequence, or Propopition, andSay, It is not Proved; Nor fo much as any proof attempted. I hould Prove that it is nor proved ; as Lefon: p. 3 个. (elfe I do but run on without an

light a Candie at midnight, to thew a blind may, that the Sun doth not thine.

Or, fecondly, fhould I Prove that it is not proved, nor poffible fo to be, Becaufe Inconfiftent with what haxh been demonftrated by Archimedes long ago, by Clavius againft Scaliger, by Snellius, Culen, and orhers : (and was therefore confured before 'twas writren.) This would be no Confutaxion. For this he confefferh to be True ; But Archimedes he rells us, was miftaken, and all that follo, him, Dial.pag. i42, 149, $150,15 j, 178, \& c$.

Or Chould I, thirdly, by a ne.v Demonfration, prove again, what they had proved before; and which he grants to be inconfiftene with what he affirms: He would fay the fame of this, as he doth of their Demonftracions; They are all miliaken, and fo am I. (An eafie way of anfivering demonftrations !) For, his Demonftrations being all good, what ever is or hath been, or fhall for the furure be faid to the contrary, is not ,he tells us, Refutatio, but Refutatum. Dial. Phof. pag. 35.
Or fhould 1 , fourthly, argue from what he grants, (in his Philofophie of Bodies, in Englifh, pag. 21 3.) that Archimedes hath demonflrated the Perimeter of a Circle to be leffe then $3 \frac{3}{7}$ of the Diameter, bsit more that $3 \frac{10}{2}$; or that, $f u p-$ pofing the Radius to confift of 1000 equal parts, the Arch of a Quadrant will be more than 1570 , but leffe than 1572 of thofe parts. And that Snellims and others have from true prixciples pronounced, That, fuppofing the Radius 10000000 , the Arch of a Quadrant differs not one whale Unite from the number ${ }^{1} 5707963$. Whereas, according to his Quadratures, it muft differ from it by many Thoufands. His Anfiver's ready; Who knows byt that, though their Principles be true, there may bave been fome Erroun in their Arithmetical operations. ibid.p. 214.

Or, fifthly, fhould 1 argue from the Canon of Sines, Tangents, and Secants, or the Foundations of that Canon. lie tells us, that Geometers have been all miftaken in that

Canon; and did nor in the Computation of it proceed pon right principles,orGeomerrical Demonftrations.Dial. pag. 156.

If, lixthly, 1 hould reply, That the Foundations of this Canon, are the fame with tnofe, which but now ive heard him affirm to be True Principles, from whence Snellius,\&c. demonArate the Proportion rentioned. He will nor Atick to Aniver, 'Tis true he Then thought them to be True Prixciples, but is Now of another mind. They were all deceived. pag. 4^{2}.

Ore feventhly, hould I argue from what himfelf infers; That, by his dootrine, the Tangent is made leffe than, the Arch; and, confequently, the Perimeter of a Circumfrribed Pol yoon, leffe than that of the Infcribed Circle. He tells us, tis no Abfurdity to A ffirm, that the 7 argent of a small eArch may be leffe than the efrch it jelf. pag. 154.

If, in the next place, I fhould fay, That, if his Quadra. tures be right, 'tis very Arange that, No one Mathematician can be found who thinks fo befide himfelf. He tells us, The Reafon is, Becaufe He is alivé. Dial. Phyr. Epif. (And it is not likely that Two men hould be of that Opinion, in Oxo age.)

If, ninchly, I hould argue, from his own Authority; That Scrliger's Quadrature, he confefferh to be Falfe, and a great Errour, Leff. p. 39. and calls it AbJurd, Dial.p.ro9: which in the fame book, pag. 142, he confeffeth to be the fame with bis, and affirms to be True. And, that thofe of his $0: \mathrm{n}$, which he now affirms for good, he did formerly confeffe to be Falfe. He tells us, pag. 149, 1 so. 'Tis true he did fo: But 'twas his Modelty (out of his refpect to Archimedas,) fo to do, (as Fofept Scaliger had alfo done before him :) But, thar he hath fince corrected that fault, (which Scaliger, he rells us, never did;-) and therefore is not now to be concluded by Archimedes's Numbers, pay. $142, \mathrm{~J}-n, 155,159$.

Tenthly, If I Thould fhew, That of all his Twelve Quadratures (the ninth and eleventh onely excepted) there are for any Two, agteed upon the fame Verdict, He tells us, That, ro dif-believe his own Quadratures, becaule of fome rmall infenfible differences, nay though the differentes ere very fenfible, were to dif-beilieve kis own fenfes; pg. 159.
If 1 thould then argue, from what himfelf confeffeth, M. I51, 152, \&cc. That what he delivers is not agreable in Arithmetical Calculation. As for inilance; That $\frac{1}{2}, 3 t^{\frac{1}{4}} \sqrt{2}$ is equal to $\frac{1}{3} \times 6$, prop. 34, 35 . That $\sqrt{3}+\sqrt{\frac{1}{2}}$ is equal to $\frac{x}{2} \sqrt{2} 4$, prop. 36 . That $1+\frac{2}{3} \sqrt{3}$ is equal to $\frac{1}{2} \sqrt{ } 10$, Fop. 40. That $\frac{1}{2} \sqrt{12}+\frac{1}{2} \sqrt{4} 4$, or $\sqrt{ } 3+1$, is equal to $\frac{2}{2} \sqrt{20}$; main $\frac{1}{3} \sqrt{1} 6+\frac{1}{2} / 5 \frac{1}{3}$, or $2+2 \sqrt{\frac{1}{3}}$, is equal to $\frac{1}{3} \sqrt{4} 4 \theta_{0}$ (Which he demonftrates for me, pag. $1^{2}, 153$. to be impoffible.) His dnfiver is, That no man, who is nat bewitch'd, will think it teceffary that (his) Geometrical Demonftrations thould agtee with Arithmetical Calculation, pag. I 51, $152,153$. And, Dial. phyf. pag. 37. that it is not meet, to examine Geometrical Probiemses by Algebra, or Arithmeticat CalcuIation.
If therefore, in the twelith place, I thould wave Numa bers, and tecake my. felf to lines: And hew bow he dah, very abfurdly, make the fame ftreight-line, to Touch a ircle at one place, and at another to Cut it. He tells 10, pag. I 52, I 54 . That 'tis no Abfurdity, to fay that the lame fireight-line doth. with its Out-fide Touch at ore place, tnd at another place Cut with its In-fide the Jame Circle. If, then, I hould urge Euclide's authority who prop. 16. lib. 3. doth Demonitrate, That the Tangent Line lies all Without the Circle, and therefore cannot Cutit. He will tel me, 'Twas a milake in Euclide, not to allow his Lines Breadth enough, prop. 4 . The Ignorance of which Truth (inam prinùs docuit Hobbius) mas, he rells us, (in Euclide, as well as Archimedes, the Mosber of many' Abfurd miPrkes, pag. 155 . So that, You ree, He will no more be

118
 HOBBIVS

bound by Enclide's (flender) Lines, than by Archimedes hi Numbers. (Nothing can hold him; a Line o. fome Breadth and Tbickne(fa.)

If, after all shis, 1 might hope to faften on the roth 0 Exclide, a place yet unfoiled : (For, though herhink, was written to no parpofe, nor cam any ufe be made of it yet he doth not deny but that it is all Accurate, pag $53,54$.$) I would Chew him, that, if it will ferve for$ no other ufe, 'twill ferve at left to, confure his Quadra tures.

He affirms, prop. 40, 41 , that XAB, (the Aggregare : 0 $A B$ the Radius, and of XA equal in power to 3 Squares 0 the Radius,) is equal in poiver to 10 Squares of the Semi radius: That is, $R \sqrt{3}+R=\frac{1}{2} R \sqrt{3} 0$. Againft which I thu: argue. Let \mathbf{R} be the expofed Rational; Then (by def.2,3. or prop.8,9. lib. 10. Euclid.) R $\sqrt{3}$, and $\frac{1}{2} R \sqrt{30}$, are $R a$ tionals commenfurable in power onely, to the expoled rational \mathbf{R}, andeach to other. And therefore (by prop. 36 , in the Greek Edition, or prop. 37 , in Clavius, $\mathbf{R} \sqrt{3}+\mathbf{R}$ is $I_{r r a}$ tional. But, (faith Mr Hobs) $\mathrm{R} \sqrt{3}+\mathrm{R}$ is equal to $\frac{5}{2} R \sqrt{30}$ (an Irrational, to a Rational;) Which is Abfurd. And ir like manner we may conclude againft what he farther af. firms, prop. $28,34,35,40,41,8 c \mathrm{c}$. viz. $\mathrm{R}+\frac{1}{2} \mathrm{R} \sqrt{ } 3=\frac{1}{2} \mathrm{R} \sqrt{ } 10$. $\frac{1}{2} R \sqrt{3}+\frac{1}{4} R \sqrt{2}=\frac{1}{2} R \sqrt{6} \cdot R \sqrt{3}+R \sqrt{\frac{1}{2}}=\frac{1}{2} R \sqrt{24} \cdot 2 R+2 R \sqrt{3}$ $=\frac{1}{2} \mathrm{R} \sqrt{ } 40$. and more to the fame purpole. But to this he would fay, "Tis fo full of Symbols it cannot be underfood: And, No man is bound to take mys Symbols for Demonfrations, As Leffon.p.2 2, 23, 28, 35, 49, 53, 54, \&c. Dial.p. 100 105,115 , and oft elfewhere.

If therefore, in the lalt place, (to avoid the Reproach of Symbolography) I fhould, in the Margin drav fo many Lines, marked with fuch Letters, (for then the Letters will no more be Symbols, than fo many Lerters in $\varepsilon_{u c l i d e,) ~ a n d ~}^{\text {d }}$ proceed as before. As for the Example, Let the line R, or $A B$, be an Expofed Rational equal to the Radius; and F $\sqrt{3}$, or $X A$, be equal in pover to 3 Squares of Radius,
and therefore, by 8, 9, e 10. a Rational commensurable in power only, to the exposed Rational R or AB : and consequently (by $37 \cdot 10$)
 $X A B$, or $R \sqrt{3}+\mathrm{R}$; (the Aggregate of both)
$\frac{1}{2} R \sqrt{30}$ an Irrational Lime: Again
let the line $\frac{1}{2} \mathrm{R} \sqrt{ } 30$ be equal in power to 30 squares of the Semiradius, or of half the exposed Rational \mathbf{R}; which is therefore (by 8, 9, : 10.) a Rational commensurable in power. But that e ggreg ate , faith Mr Hobs, is equal to this Line; (an Irrational, to a Rational;) which is Absurd. Tothis I know net yet what Anfiwer he will make: W tether he will tell us, as jag. 1 59. that fo small a difference Should not break fquares; Or, will think fit to retract, what he before' granted, jag. 53. that Excide's Tenth book is Accurate ; (For to complain of Symbols, or of Arithmetial Calculation, or of Ludolphine Numbers, there will be no cause; for here is nothing of all there:) Or, what other Answer he will think upon. Nor am I Solicitous what it will be: But if Thomas and Hobs can fatusfie one another; Ithink You and I are facisfied already, what to think of it.

I thought, not to have troubled You withthe Confequents which he infers from thole falfe Quadratures: About Dividing an Arch in rasione data, prop.46. And, concerning the Cycloids, in the 22 remaining Propofitions ; and at lett 20 Confectaries. Because, though they had no other Faults, but that of a False Foundation, they muff needs fall with it. But there being fo many others, and forme of them fuch - Pretty ones, I cannot paffe without letting You fee a few of them.

In his prop. 46. To divide an Arch in any Proportion given; (betide that it is grounded on a false quadrature) fupporeth also, That if a Circular Arch By (at left, if Infle than hall

20

Zuadrant) Iye between ewo Parallel Atreight-lines, \boldsymbol{y}^{8} he Sine, and $\mathrm{I} \beta$ a contingent line equal to that Arch; vhat ever ftreight-line Cuts thole wo Parallels Proportionally, doth Ifo cut that Arch in the fame roportion. Which hov Abfurd t is, having fhewed fufficiently in ny Elenchw, pag. 97, 98, 99, 103, $104,111,112,113.8 c$. (for he is oft barping upon the ame flting) I hall at this place fay no more of it. And thefe Arguments or Evafions, with which Thomas is here atisfied, p. 14 4, 149. (becaure Hobs cells him, how truly, I vill not day; That prater numerros Ludolophinos 1 have produeed nothing to the contrary)are, there,fhewed to beAbfurd enough. Nor wil it be necefflary to repeax them here, becaufe the Abfurdity is fo very vifible upon the firf View, to any one who underftands Marhematicks, though bur a little.
His $47^{\text {th }}$ Propoftion, (which begins his difcourfe of the Cycloide, and on which the reft depend,) dorh, in the Conllfution, prefencly fuppofe the truth of his Ninth Quadracure, That eArcus Semicirrouli potef Decem (Semiradios, lege) Semidiansetros. And therefore, for want of good foundation, that whole difcourfe falls. But there are, befide this, many other miltakes, of which I Shall hew a few.

The firt I thall mention, is a fine Argute Sophifm (in the Demonltration of his $49^{\text {th }}$ Propofition) called $A m p h i-$ bologia; (to the v, how Neatly he can play the Mountebank in Mathemarieks;) and it confits, not in the Equivocal Signification of a fingle' Word ; but in the A mbiguous Syntax of the Sentence. 'Tis juft in this form ; OEtennisms ruperat Decennium Biennio: Atque Octennimm fuperat Sexennimm Biennio: e Eqsantur igitur Sexenniums \mathfrak{G} Decemium. I know nor well how to put it into Englifh withour playing the Poer; (for, in Profe, our Englifh Syntax will hardly bear the Elegance of that Amphibsiy.)

Eight-jears Tent-years furpaffe by juff Two years ; Eight-years fourpafe Six-years by juft Two years:
That Six and Ten are equal, hence appears.
The firt part of the Anrecedent is true, if Octemnium be, there, the Accufative cafe; The fecond is true, if, in it, otenmium be the Nominarive cafe: And the Confequence is true, if, in both places, it be either the Nominative or the Accurative ; (I mean, if in Both the Nominative, or in Boch the Acculative.) And juft fuch is his Argument,

(which I mult give you in his own words, becaufe a Trmfkation would (poil it ;) Superat Triangulum GFs fpacinm Cyctoidale FGO, fpacie trilineo snm, minus fpacio bilineo FrF. Which that it may be True, You are firft to fuppore Triangulum to be the Accufative (afe, and Spacium Cycloidale the Nominative, and underfand it thus,

$$
F G m-G F s=s n m-F_{n} F .
$$

But then again, to carryon bis Argument,(the Confequence being otherwife lame, You are, contrarywife, to fuppofe Triangulium to be the Nominative cafe, and $S_{p a c i u m ~}^{\text {C }}{ }_{y}$ cloidale the Acculative ; and underftand it thus;
$G F s-F G M=s n m-F_{i} F$.
To which he doth thus fubfume, Sed Triangulum sF6 (Triangulo GFs aquale) Superat \int paciums Fom, codem $\int p a c i o$

$$
s F 6(=G F s)-F 6 m=s n m-F n F
$$

From whence he concludes, Therefore FGm and F6m are Equal. And on this Confequence, depends the molt of that which follows.

In his next Propofition, prop. so. he would prove, That the two fegments $F G m$ and $B G m$ do ayniponderate on the line $B_{m} D$., Becaufe they are Equal, and, $\varepsilon_{\text {qually }}$ Diftant. The Confequence is good, (if, by their diftance, be meant, as ought to be, the diffance of their Centers of Gravity ;) but neither part of the Antecedent. That they are Equal, he fuppofeth proved in the precedent Propofition, whofe proof we laft examined. That they are Equally difant from the line GD, he thus proves, Becaufe B and F (the utmoof Points of each) are equally diftant from it, (and, that their Neareft parts be Contiguous, is manifeft) But what is this to the purpofe? The tquiponderation of two Figures, doch not depend upon the Equidiftance either of cheir $v_{t \text { tmoft }}$ points, or of their Neareff pcints, of Both; but, of their Centers of Gravity. 'Tis rrue, that, had the Segments been Like and alike-fited; if Equal, the Equidiftance of any two Homologous points would have concluded the Equidiftance of their Centers of Gravity, and confequently their Equiponderation : But of fuch Unlike figures as thele, the cafe is much otherwife. And this is fuch a Miftalee as cannor eafily be chought to proceed (as be ufech to diffinguilh) from Negligence, or Secwrity, but, from I Inorance of the Subject whereof he treats. He might as well have concluded, thar a Sexnicircle and a Trapezium equal thereunio, whofe Pafes are the fame, and their Heights equal, would Equiponderate on oppofite fides of their Common Bafo; For he might here prove, as much as in che prefent care, That their Utmolt points are Equallydiffant from that common Line; and their Bafes Contiguous. But no man, who knows what belongs to Staticks, would hence infer, their Equiponderation: Becaufe the

Heanton-timorumenös.

Equidiftance of their Centers of Gravity cannot be her concluded. And "Eis certain, that the Traperiwis muft nee Preponderate.
The fame Errour, he doth prefently commis over agai to prove, Thar $F 6 \mathrm{~m}$, and $B 6 m$, do alfo Equipondera upon the fame line. And then, a third time, to prove a like of $F D_{m}$, and $B D_{m}$.

And there Fundamental miffakes (with fome others good) do fo infect all that follows, That, befide the fi falfe Confiruction ofprop.47, which infects the whole; The is not in all that follow, unleffe prop. 4.8,54,55,5 (which yer are not exempr from the influence of that fal Confruction) and prop. 67, with one of its Confectarie any One Propofition, which is not alfo, Othernife Falfe.
I hall yet inftance bur in one more. (For I do not judg it meet to give You the trouble of a particular account all.) T is prop. 62 . which I racher fingle out, as well, becau it is not so complicared with the reft, but that it may b confidered apart ; as alfo, becaufe the Demonltration of i is fomewhat extraotdinary.

z

He doth firt, Suppofing the Arch of the Semicirc! $\mathrm{B}_{3} \mathrm{D}$ to be divided into any number of equ arts, at th
jints $1 ; 2,3 ; 8 c$. and that of the Quadrant BZD; inte ıe fame number of equal parts, ar the points $\alpha, \beta, \gamma, \& c$. 'ndeavours to prove, Thar, Becaufe $B x, B \beta, B \gamma, \& \& C$. in the quiadrant, are equal to $\mathrm{Bi}_{1}, \mathrm{~B}_{2} ; \mathrm{B}_{3}, \& \mathrm{cc}$. in the Semicirele; ad the Right-Sines of Thofe, to the Chords of Thefe; which is True:) Therefore, if fron the poins α, β, γ; fc. in the Quadrant, be let fall Perpendiculars, or Kight nes, on their Semidiameter BD ; thefe Right-Sines of the Luadrant, will cut the Semicircle, each in its refpetive pint, $1,2,3,8$ c. Or, (which is equivalent,) if that Luadrant lye not in the plain of this Semicircle, but ftand rest perpendicularly upon it; thofe Righr Sines from i, $\beta, \gamma, \& c c$. will fall on the Parallels to DF, which paffe prough the Points $1,2,3, \&$ c. refpectively. Which is fo frild a Confequence, (and the thing inferred foabfurd,) nat I know not how to fit it with an Epithete fo Mild, as 1ay not make You apt to fay, I am Severc. The wort fhall fay of it is, That, it is one of Mr Hobs's Conpquences.
And that which next follows, is juft like ir. Having bus-proved, That if that Quadrant be erefted perpendiular to the plain of this Semicircle, on any of the Paralels to $B D$, which complear the Reit-angle $D G$; the Sines let fall from $\alpha, \beta, \boldsymbol{\gamma} ; \& \varepsilon c$. will fall on the Parallels to OF paffing through the refpective Points, $1,2,3, \& \mathrm{c}$. He hence would prove (by a Consequence as good, as either Antecedent or Confequent is true,) That the Parallels to BD which compleat the plain of the Cycloide DBnF, do rontinually decrexfe in Aritbmetical Proportion till that at F they vanifh ; as alfo the Quadrantal Archs defcribed by thofe Parallels upon the Axe DF : (That is, he would prove, that the Cycloid BmF is a freight line : For, Thit che Parallels in the Triangle DB6F do fo decrenfe, is minifeft ; and the Quadrantal Archs by them defcribed:) And, therefore, that the Plains of thofe Quadrants do decreafe in th Tuplicate ptoportion of lines fo decreafing: (That
is; That the Solide defcribed by the converfion of the Cycioide DBmF ufonthe Axe DF, is a Cone: For, that the Plains of the Cone, made by fuch converifon of the Triangle DB6F, do so decreafe, is manifeft.) Which is a a Miltake fo Like the former, as if they were Twins.

There is yet a Third fo like there two, that, though I muft not fay, they be Three Twins (left it fhould feem a Solocifm; yet they look fo much alike as if they were all Born as one birth. For having proved,(as he fuppoferh,) that the Parallel Plains, which cut at equal diftances the Solide defcribed by converfion of the Cycloide DBmF upon the Axe FD, to Decreafe in the Duplicate ptoportion of Lines continually decreafing in Arithmetical Proportion: He thence infers, (what that prop. 62. affirms,) That the Solide made by this Converfion, is to the Cylinder made by a like converfion of the Reitangle GD, as 2 to 3. Which is neither 7 rue (for'tis indeed as 5 to 8 ,) nor doth it follow from whar he pretenderh to have proved. For, did thofe parallel Plaines decreafe in fuch profortion, (that is, were that Solide, a Cone ;" as, by fuch fuppofition, it mu ft needs be ;) the proportion would nor be, as 2 to 3, (as he infers,) bur, as 1 to 3: Forg fuch is that of a Cone to the Circumfrribed Cylinder.
I promifed You to give but this One Inftance: And therefore fhall with this conclude what I fay to the Geometry of his Dificurfe concerning the Cycloide. Onely, as an Inftiance of his good Language, (for I do noc purpofe to afflit Your Ears with much of it, I hall repear a line or two. Having prop. 67. (which is the onely True Propofition of all thar concern the Cycloide, ${ }_{2}$) affirmed, That Cylinders are in Proportion compounded of that of $\mathbf{t h e i r}$ Bafes and that of their Altitudes; He tells Thowres (who feems to doubrit) that Hots, hath Demonftrated the truth of this Propofition; (and glories in it, as if it were a difcovery of his own, never known before :) Demonftrar it Hoblizs lib. de Corporf, cap, 33. Art. I4. n od Capat ipfe potyit rodere, Hobbii ipfiwe effe negavit. Non quod alizmum efe putarat, Jed quie inftituto ejms Mentiri expedivit. Nor Chall I make any other Reply to it, buc onely refer You to whar I have faid againft rhat Chaprer for ten pages rogether in my Elenchus (from pag. 16. to pag. 25 . inclufive.) From whence, I fuppore, You will be facisfied, Thar neither I bad faid nothing againft it, nor do I deny it to be bis. Much of That Chapter is, doubtleffe, his own; though the Beft of it, II fuppofe, he will not deny to have been known before. And then, To whether of us Two, the Expedient he menkions doth belpng; I hall leave to You to judge.

To his Appendix: Wherein he precends to Amend romewhat that was Amiffe, in his book D_{c} Corpore; I thal! fay nothing. For, though indeed it be fomewhat Alsered, I do not find that it is Amended. The fundamental Miftakes fill remain ; and fo ir ftands Confuted as before.

I fhall, here, conclude this long Digreffion. Whereinl have given You fome Account of his Six Dialogues svritten againit me : Not onely to hew You the Kearons for which I did not then think it neceffary for me to Aniwer them: Bur rather to make it evident to You, That the Author of thofe Six, may, without danger, be Neglected, when he writes a Severath; (which is the firft part of what 1 was to thew ;) And (which is the latter parc) That he, who takes all thofe to be good Geamety; and, hopes from thence to raife a Repuration of being the Firft that bath made the Grounds of Geometry, Firms and Coberent, will Need at left if not Deferve, Your Pitty.

His Seventh Dialogue, Intituled, Dialogui Phyficu, (which gave occafion to this Difcourfe, remains yer to be confidered. Which though it feem: mainly to be directed againft thofe Noble Experiments of Your $\boldsymbol{P}_{\text {reumatick }}$ Engine ; Yer (fo much is he concerned, in every thing he doth, to be revenged of mes for not approving his Mache:
maticks,) he cannot conclude it, till he have firft diftribued fome tokens of his difpleafure towards me, for prefuming to anfiver a Paper (which proved to be His, but was pretended to come from France,) pretending to the Geometrical Duplication of a Cube. Which, though it there come in the laft place, You will give me leave to take firft into Confideration, becaufe of-its Connexion with that whereof we laft difcourfed.
Having therefore taken occafion pag. 32. (from what he
 Experiments,) to commend his Pbyficam Hobbianam, (which might be allowed as confonant to the prefent subject, being an Inquifition into the Natwre of the Air,) He proceeds to commend his Etbick!, and Politicks, (Not becaufe the fubject whereon, he was difcourfing lead him to if; but, becaufe he thinks it neceflary, when ever he writes any thing, to Commend All that ever he had written before;) But, more efpecially, his Geometry; his (manifold) Qiadrature of the Circle, his Divifion of an Arch,or Argle, and what he had lately delivered concerning the Cycloide, and the Center of Gravity in a Semicircle, contrary to what others had before demonftrated; (which being the latt bings he had witten, and not yet commended by any, 'rwas neceffary that Thomas and Hobs fiould mutually declare their approbation of them:) Which leads him to that of his Duplication of the Cube, (as, much conducing Ho the Explication of the Natare of the Air:) whereof, had he no thus publikely owned it, he might have lof the credit.

For, Obferving that Clr Hobs's G eometry (whether by reafon of others Envy, or for what other caufe, I will not now difpute, was not now in any great Repute; and, Fearing lealt that Odism Hobbii, which he fo much complaines of, as fo prejudicial to Man-kind in hindring the reception of his Notions, withour which it is impoffible to make any progrefle in the Search iof Nature ; (For,

Conveniant, Stwdia corferamt, Experimenta faciant guantums volunt, Ni/i © principiis utantur meis, Nihit proficient; The Nature of ©Motion, the nobleft and moof neceffary piece r. Marhemaricks, he rells us, being ievor yeet Touched upon by any but (Mr Hobs;) might be prejudicial alfo to this of the Cube, (and, thereby, not onely deprive him of the Credic, but all man-kind of the Yenefit, of his New Difcovery :) To obviate thofe evils; he caufed his Probleme of Doubling the Cube, to be rinted in French; (as done by V.A. Q.R. which he now interprets to fignifie u_{n} Autre $Q_{\text {ue }}$ Raberval;) and divers papers of it to be given abroad, which were pretended to be brought from Paris; (For had is been in Englifh, or thought to be done at home, the Matter would prelently have betrayed the Author:) Not doubring, but that, the Odiams would ceafe to operate when the Perfon was concealed; and; no PrejudicrebItructing an impartial Eftimare, his Demonflration would prefentily find reception and Approbation: Which could not afterwards be withdrawn, when He fhould appear to be the Author. By which means, he fhould both Benefit Mankind againft their wills, and, unawares, receive their APprobution.

But,fö ill a Fate attends his Actions though in Difguife, and that fecter Antipathy to Mr Hobs's Inventions, though not known to be his, did operate fo ftrongly ; that, trotwirbftanding the Arrifice, this Demonftration fared no better than thofe he did avow for his. And, which is worft of all, when it had received Confutation from fevetal hands (which might have taught any man who could but Understand, though he knew nor how to Make a Demenltration, What was to be done ;) He , Then, proclaims himfelf the Author of it; when it had beerr more prudence, by concealing himfelf, to decline the Reproachr of what he thinks a Credit.

The Paper, made Englinh, feeaks thus.

"The Doubling of the Gube. ${ }^{\prime}{ }^{[} \mathrm{By}$ V.A. Q.R.

" A Streigbt-line being given; To find betwoen It, and its Half, Tino Means Proportional.
"Let $A B$ be the ftreight-line given; and $A B C D$, the 'Square thereof, cur into four equal Squares, by the two "Atreight-lines EF, GH, which cut each orher in the "Centet of the Square ABCD, at the Poinc 1: So that "the four fides be divided each into tivo equal parts at "the four points E, F, G, H. I am then to find Two "Means Proportional berween DC and DF. "I draw the Diagonals AC, BD ; and defcribe the four "Quadrants of Circles $\mathrm{ABD}, \mathrm{BCA}, \mathrm{CDB}, \mathrm{DAC}$; "Whofe Archs cut thofe Diagonals, in K, L, M, N. At "which Points, thore Archs are cut, each into two Equal "parts. Which is fufficiently known fo to be. "I produce BA, CD, to the Points O and P, fo far "as till they be equal to $A B, D C$, each to each. And ha"ving defcribed the Quadrant of a Circle ADO, and "drawn the Diagonal Al", (which will cut the Arch DO "into two Equal parts, at the point Q.) And being pro"duced on the other fide ar R, will mark $B R$ equal to the "Right-Sine of 45 degrees, that is, to the Semidiagonal "BI. And by confequent SD is the Exceffe of the greate "Extreme AD above the Semidiagonal AS. "This $\mathrm{SD}_{2} \mathrm{I}$ cur in tivo Equal partsat T . And, in "AD produced; I take DV equal to DF, and making I "the Center and TV the Semidiameter, I defcribe the "Circle VXYZ, curting DC in X, DA in Y, and the "Atreight-line RS produced in Z. And I fay, that the
"two Atreight-lines DY, DX, are the two Means Propor "tional required, between DP equal to $A B$, and $D V$ equal to its half.
"For, drawing the Areight-lines VX, XY, the Angle "VXY (in the Semicircle) will be a Right Angle; And "the freight-line XT drawn and produced unto the Con"cavity of the Circle VXYZ, will fall on 2 , becaufe " ST , and TD, are equal, and by confequent SZ equal to "DX, and XZ will be the Diameter of the Circle "VXYZ. The Angle therefore XYZ in the Semicircle "is a Right-Angle; And, drawing the right line VZ, "it makes $V X Y Z$ z Rectangle, and its fides $V X, Y Z$, "parallel.
"Now, if the freighr-line $Y Z$ produced, fall upon P, "the whole PZY will be a ftreight-line parallel to VX; "and the alternate Angles YPX, VXP, equal. And the "Angles YPX, and XYD, will be alfo equal ; and the "three Righr-angled Triangles PDY, YDX, XDV, will "be like Triangles. And confequently, the four Areight"lines PD, DY, DX, DV, will be in the fame continupl "proportion.
"I am therefore to Demonfrate; that YZ produced, "will fall upon P.
"Lec PV be drawn, and cut into two equal parts at $a_{\text {. }}$ "And alfo the Atreight-line ab drawn parallel to AV, cut"ting PD in c. And likewife Td drawn parallel to PD, "cutcing $a b$ in d; and de divided into two equal parts at g. "On the centre g, at the diftance $g a$, let the Semicircle "abb be defcribed, cutting PD in b, and $a b$ in b.
"This being done ; the two ftreighr-lines $a h, b h$, being drawn will make a right Angle at b. Now ac is the "half of DV. And, becaule $d g$ and $g c$ are equal, "db will "alfo be equal to the half of DV, and ab will be the half "of YV.
"Therefore, as PD.to DY, that is to fay, to the com"pound of DS and SY. fo is Pc (the halfof PD)

HOBBIUS

the corr cound of the halves of DS and DY, and confequently $P 6$ produced will fall upon \mathbf{Y}. And the freight lines $h 6, h a$, wil be the halves of $X Y, X V$. And $X Y$ being divided into two equal parts 'at i, the figure Yibb woill be a Rectangle, and Yb parallel to XV. Bur $Y Z$ is parallel to ' XV. Therefore YZ produced will fall upon P. And (by what hath been demonftrated) the four ftreighr"lines PD, DY, DX, DV, will be in the fame continual "proportion. I have therefore, between a, ftreight-line " given and its half,found rwo Means Proportional. Which "was to be done.
"Confectary. A Cube whofe Side is the Grearer (lege, "the $L-\iint e r$) of the two Means, is the double of that Cube " whose Side is Half,the Greater Extreme. For the Pro" portion of the Cube to the Cube, is Triplicare to that of "t the Side to the Side ; And the Proportion of PD to DV " is Triplicate to that of PD to DY.

I thought fit to recite his Paper verbatim, not onely to let You fee, How like an Artift Mr Hobs hath done it ; but likewife becaufe in his Reply to my Confucation, he purs me to prove a Negative (I hat fuch a thing is not demonnfrated in his paper.) And though I had already proved it to be Falle (and confequently, that it was nor Poffibleto be demonftrated;) yer, becaufe this proof doth not feem to him fufficient, I have produced the whole, that You may fee if any where therein You can find this Impoffibility performed.
You may perhaps wonder (and fo did I till I knew Ms Hobs was the P uthor of that Paper) why he fhould clog his Figure, and the Conftruction of it, with fuch a Multitude of fuperfluous Lines and Letters, whereof he makes no ure at all either in the Confrudion of the Probleme, or the Dcmonfration of that Conftruction.
For, firft, he dorh, on the Line given, defribe a Square;
ters ; once, by two Croffe-lines parallel to the fides ; 2 again, by two Croffe Diagonals from. Corner to Cornc He doth then infcribe four Quadrants of (ircles; what Centers are the four Corners of that Square; and theit. Archs paffe each by two other of the Corners. The tivo former ftreighr-lines, parallel to the Sides, divide, the whole, he tells us, into four Equal Squares: Thar they Cur each orher at a certain Point, which point of Intercetion is the Center of the whole Square; and, That the four sides of that Square are each of them cur into two equal parts by thofe croffe-lines : (equal to one of which be dorh afterwards take the line DV in the continuation of AD.) And the two croffe Diagonals, he tells us, are cut in four Points, by the four Quadrantal Archs; Ac which Points they do alfo cut thore Archs into equal parts.

Now, whereas You might expeet to hear, what ufe is to be made of all this Confruction hitherto; The utmot that is to be faid of it is but this; Let A'D, equal to the Line given, be continued to V, fo that $D V$ be egral to the half thereof; and let DX be perpendicular therennto. Which might as well have been caid at firft. And therefore that Square defcribed, with all its Implements, are to no purpofe.

He then prodeeds to defcribe Three Quadrants mote, in another Square on the other fide of the, line DA. Bifecting one of them by a Diagonal at Q; whence QSR (parallel, I fuppofe, though it be not faid fo, to AB) is conrinued to the further lide of the other Square, at 1 l . Two of which Quadraurs thus defcribed are never aftet fo much as mertioned, nor is any ufe made of them at all. The third Quadranc, with the Diagonal, and QS (part of the line QSR) though they might have been Spared, yer I dornot find fals, with, becaufe there is fome ufe made of them in defigning the point S.

The ufe that is made of this part of the Confruetion is this, (which might have been faid without it:) Now fuppofing $A D$ the Radius of a Circle, let $A S$, part thereof, be equal so the Sine of 45 Degrees.

He then proceeds to this purpofe. Bifocling then $S D_{\text {at }}$ 3 on tbe Center 7, by tbe point V, draw a Circle, cutting $D X$ at X, and $A D$ at T. The lines $D Y$ and $D X$ are the tho Mean-Proportionals, between AD, and, its half, DV. Which ends the Conltruation of the Probleme. The whole whereof, which he (confufedly) delivers in Four Parta graphs ; is, You fee, more clearly and more to the purpof expreffed in little more than fo many Lines.

When His Paper, fo drawn, was brought me, (not knowing who was the Auchor, but fuppofing it to be fens from France as was pretended,) 1 was furprifed; and wondred much that any other man fhould write fo like Mi Hobs; (having formerly thought, that this way of Geo merrining bad been peculiar to himfelf, and unimitable by any other.) And fuppofing, by the manner of it, that it was done by fome Youngfter, who had lately applyed himiclf to Mathematicks, but was unacquainted withthe Methods of Conftruction and Demonftration; I did firf, without any reflexion, (more than a bare intimation, thay there was much fuperfluous, and fome miftakes,) reduce his Conffuction and Demonftration for him, into fome what a better form, (that he might fee, how much it was out of order, as he had done it ; and the better diferm where its ftrength lay, and, where its weakneffe.) And fuited a Figure to the Conftrution thus Amended, (tolet him fee, hov much of his was wholly Superfluous:)leang .out mof of the Superfluities in his ; but retaining all that was any way ufefull. And then adjoyned a threefold Cont futation of it.

The former part of this, it feems, Mr. Hobs did under-: Atand: And therefore thought fit to fuppreffe his own and publifh his Probleme and Demonfration in that Form, that I had draws up for him; (but retaining his own Figure, with all irs fuperfluities.) But the latter part, which cons tainsthe Confutation, it feems, he underfood not. For, had he underfood it, he would not have bean fo imprudens
as to expore himfelf as the Authour of that weak miftase when he had the opportunity of concealing it.

And he hath in both, Truly enough reprefenter my words, or the fenfe of them, (10 much, I mean thereof as he thought fit to expreffe;) fave onel thar, inftead of 1,997 or (as I had written it) 19997 he hath twice fubflituted 1997, (leaving out the note o Separation between the Unite, and the Decimal parts an nexed ; $ノ$ and then makes advantage of this Fallification

His Demonftration, omitring the fupertluities, is to this purpofe. Drawing the Diameter XTZ, and the freight-line. $V X ; X Y, Y Z$; the Angles $V X X, X Y Z$, ane Right \mathcal{A} Ingles and $Y Z$ parallel to $X V$. And therefore, if $Y Z$ contiwned, tilli aneet mith $X D$ produred, do cut off $D P$ equal to. $D A$ or the double of $\mathcal{D} V_{3}$ (the Triaxgles PDr, $r D X, X \mathcal{D} V$, being lik. Triangles;) the lines $D P ; \mathcal{D} T, \mathcal{D} X, \mathcal{D} V$, will be in centinka propertion: And, the Cube of DP, deuble to that of Dr. Anc thus far his demonftration is right.

Now, That $X Z$ fo produced will cut off $D P$ equal to $D A$ he thus endeavours to prove. Take DP equal to $D A$, (add, or of what length foever; For, wharever the tength o it be, the Demonitration proceeds as well ;) Drawing the freight-line PV, and bifeting it at a ; and dxaming ab jaral. Wto Dr, cutting DP at c; and Td perpendicular to ab: then, bifecting dc at g; and, on the center g drawing, by the point a, a Semicircle, cutting cD at h , and ab at b : Becaufe ca is equa to the half of $D V$; and cg to the balf of $D T$;ab will be equal to the half of V' ; and tberefore, jonning Pb, this continued, wil fall upon r; and joyning bh, ha, thefe will be equal to the balves of $X X, X V$, and parallel theresnto. Which is likewife true : But $f 0$ is not that which he infers from it, vir.

Bifecting tberefore $T X$ in i , and joysing ih; the figure Y ihb will be a Right-angled Parallelogram: and therefore YbP will be Parallel to XV, and confequently, the . Same with $Y Z$ praduced.

But here his Demonftration is lame, and, confmematly,
his whale Procefie failes. And I had given tim à threcfole Confuration of it.
Firft I hewed, Where his Demonftration was defective. He had proved indeed, That th is equal and parallel to Xi_{i}; and, confequently, That 6 Y was alfo Equal and Parallel to $b i$; and therefore, thar Yihb is a Parallelogram; but nor, Thar it is Right-angled : there being nothing in allthe Proceffe to determine,' what are the Angles of that Parallelogram ; the Equality of the Parallel fides being the onely thing proved; which is as true in Rhombocids as in Reitangles. That which I took to be the occalion of his miOtake, I fyyd, was this; 'Thar, having proved afb in be a Righe Angle, and ab parallel to V X; and, imagining (what hould tave been proved) that bi was the Coincinua. tion of $a b$; he did, confequently, imagine, that bhi was alio a Right Angle, and bi parallel to VX. Buir, That bi is the Concinuation of ah, thould have been 'proved, (nor, taken for granted,) the whole iweight of the Demonitracion lying upon it. (Nor is it indeed True; For ab continued, will never come at i; but paffe fomewhat lower, betiveen it and $\mathbf{Y}: \mathbf{X Y b}$, and $i h b$, being here Obtufe Angles.)

What he Noiv offers for the proof of it, is bur a Repetition of the fame Miftake. Who fees not, Ityyth he, That if, compleating the Circle, we draw the Diameter hok ; the Sine hk millbe Equal and Parallel to $T Z$; and $P b$, to $a T$; (which is very true;) and, confequently, (bur this Confequence 1 cannot fee) that ah paffeth through tbe (enter T, ard bifects $X Y$ at Right Angles at i ? He doch again imagine (bur hath not proved) that ah, $h T$, and T_{i}; are all parts of the fame Atreight-fine ai. Whereas, in eruch, they be Three different Lines, and make Two Angle, one ar h, arother at T; nor is any of them a part either of ai, or of $b i$, or of aT. 'I is true, chat $T i$ bifens $X r_{\text {sin }} i$ at RigheAnoles; and, that ah contisued will fomewhere cut XY ar Kight Angles, not in i, but fomewhat nearer to r; and, $a b$ is indeed Parallet to Fi, but not a part of the fame ftreight-line
with it ; Nor will a freight-line' from a to ; come at ad either at b or T, bur fomewhar higher than b, and lowe than T, cutting $b T$ in the middle; Nor is hi parr of the ftreight-line ai, bur makes an Angle with ic ati. 'Tis trus alfo that P b is Parallel to a ftreight-line frous a to T_{5} bu: not to the line $a b$; nor witl thar ftreight-line from a co T came athar all ; wor is coincidene witb:hiconcinued, bu Parallel thereunto. (So many Miftakes are there in one A. mendment !) And;whereas Mr. Hobs imagineth (withour proof) that $a b, h T, T i, a T, b i$, and $a i$, ly all in one conti 1 , nued Atreight-line ; they are indeed Six feverall Areight lines; whereof $a b, 7 i$, and $a T$, bi are the oppofite fides of a Rhomboeid; and $a i, b T$, the Diagonals of it, (And, is he think othervife, he fhould have proved it, noty taken it for granted.) 'Tis true indeed, that there is a Point fomewhere, to be taken : where, if weplace P, the foute points a, h, T, will ly in one Atreight-line. Fur chat this poine is ${ }_{x}$ a Diflance from $D_{;}$jutt Double to D. , he hath not proved. -

And the berter to expreffe all this, I thought fit to adde a Figure, of my own, fuited to the Confruction and Ie monitration as is is here amended. Wherein I have fetained, of bis, fo much as was neceffary to exprefie the True Proceffe of his ConAtuction, and the Full Strength of his Demonflation : Onirting thofe Superflwous Lithes and Letrés (which, You fee, were very many) which ferwed But firt to confound Himfelf, and then his Reedere And I have therein purpofety taken the tipe DP, not priecifely equal to DA, bur, at. pleafure, (as is intimated to my Fmendation :) As well the better to expreffe there Six Lines belonging to the Rhomboeid abiT, (which, though diffine?, would yer have lyen fo near to one another as not to be expreffed conveniently to the view ;) As alfo, that the fame Figure might ferve for my Second Refuration, which now follows.

My Second Refutation was, Becaufe the length of the
lineDP, which is she chief thing to be Demontrated, is zor ar all concerned in his Demontration. But, what ever be the length of DP; (whether equal, greater, or leffe than the double of $D V$, his Demonftration proceeds alike. And cherefore, doth no more prove, that DX, and DY, are the mean-proportionals between DV, and DP she doulle of it; than, between DV, and DP of what. lengith Scover.

But for this, he fayth, I bring no Demmonffration. It's verp

 true ; (not was it my bufineffe, there, to bring a DemonAration ; but, to Anfwer what he pretends ta be a Demonftration, and hew the weakneffe of it :) But had he reviewed his Demonitration, and applyed it to DP of any other length he pleafed; he would have found (withour a Demonitration of mine,) that it would proceed verbations juft as it doth now. For, what ever be the length of $D P$; if hejoyn PV, and from its middle poinc a, draiv ab parallel so $V Y$, cutting $P D$ at c, and, from T, lec fall the Perpendicular Td; and, (bifecting $d c$ in g,) on the center g, draw the Semicircle abb; (and fofoth; as in his conltrution;) Becuufe a is the middle of PV, e will be the middle of PD , and are equal to the half of $D V^{\prime}$, and cg to the half of $D T$, and therefore ab to the half of VY; and, confequently, Pb concinued, will fall upon Y ; and $b h, h a$, willl be equal cothe halves of YX, XV, and parallel thereumo ; and $/$ parallel $6 Y$, and equal to it :(which is all that he proves in his cafe.) If therefore from hence he can infer, in bis cafo, that T ith is a Refiengle (and, confequently, $\mathrm{Y} b \mathrm{P}$, the fame with YZ produced ;') I may as ivell infer it, in amy cafc; and conclude, as he dorh, that DX, and DY, are two meanProportionals berween DV, and DP, whatever be the length of DP. His Argument therefore, either dorh nor prove, Thas they are the Mean-Proportionals between DV, and the double of DV. ; or elfe it doth allo prove, That they are the meen-proportionals between DV and any line whatever. Qxed erat propofituas. Sa that, You see, it

Tas not for want of a Demonitration, that he had it not at rft ; but onely upon a Prefumption, that the Authour of he Paper had known how to apply his own Demonftration o another cafe, without my help.
My Third Refutation, undertakes to thew, not onely hat what he affirms is Undemonltrated, but that "tis Falfe: And doth demonitrate', 'rhat DX, DY, are not (as he' afirms) the tivo Mean-Proportionals between DV and the Double of DV ; but, between DV and a line fomewhat Ceffe than the Double of it. Thus. Suppofing DV, equal to 1. DA the Double of it will be equal to 2. And AS (which is to DA, as the Sine of 45 degrees to the Radius, or as the Subrenfe of 90 degrees to the Diameter) ill be $\sqrt{2}$. And, therefore, SD equal to $2,-\sqrt{h}$. Which idded to SY (equal to DV) makes YD equal to $3 \cdots \sqrt{2}$. And, confequently, DX, (a mean-proportional between $D V$ and $D Y$, thar is, between I and $3 ; \sqrt{2}$, is equal to $\sqrt{u}: 3-\sqrt{2}$: (the Poot-Univerfal of $3-\sqrt{2}$.) And thereore, the Fourth Proportional muff be' (not 2, as Mr Hobs firms, but) $3-\sqrt{2}$ into $\sqrt{ } \mathrm{u}: 3-\sqrt{ } 2$ For,

$$
\begin{aligned}
& \text { As D V, to DX : So is DY. to the Fourth. } \\
& \text { I. } \sqrt{: 3--\sqrt{2} .:}:=3-\sqrt{2} . \quad 3-\sqrt{2} \text { into } \sqrt{ }: 3-\sqrt{2} .
\end{aligned}
$$

Which Fourth (reduced to ordinary numbers) is equal to , 997 fere; and is therefore leffe than 2, the double of V. Quod erat oftendendum:

I do nor know, whether it will be worth Your while, to onfider of $\mathrm{Mr} \mathrm{H}_{\mathrm{ob}} \mathrm{s}$'s Aniwers to this Demonfration: But, becaufe it may be conducing to what I am moving for, thall prefent then as they are.
Firft, That thic Fourth Proportipnal is equal to $3--\sqrt{2}$ nultiplied into $\sqrt{ }: 3-\sqrt{ } 2$; be doth very well perceive; but, That this is equal to 1997, he faith, be cannot underfland. rouly, no more can I. Bue, if he cannor undertand how t canbe equal to 1,997 fere, or (as I had then writtenir) o I 997 fere; he, can underftand very little. For if he
have fo much Arithmetick as to extract the Square root of a number given; he mighe undertand that

$$
\sqrt{2} \text { is equal to } 1.41421,3,564
$$

and therefore $3--\sqrt{2}$ equal to $1.58578,644-\cdots$ and its roct, $\sqrt{ }: 3--\sqrt{ } 2$ equal to $1.25928,013-$ and $3 \cdots \sqrt{2}$ into $\sqrt{ }: 3-\sqrt{2}$ equal to $1-99694,935-$
That Fourth Proportional therefore is fomewhat leffe than 1,997, or 1222 , and therefore not equal to 2. Which, if Mr Hobs cannot underftand, it is not my fault.

Next, becaufe he doth not nuderftand this; He endeavours to find the length of that Fourth Proportional, his own way. And firft he thinks it fir to change the Meafure: And whereas I fuppofed DV to be 1 , and therefore DA (the double of it) to be 2 ; He will fuppore DA to be 1000 , and DV to be 500:: (Which I do nor blame; becaufe is is as free for him as for me, to take the firt term ar pleafure:) And, confequently, AS to be $\frac{1}{2} \sqrt{2000000}$, which is fomewhat more than 707. And therefore DY fomewhat more than 792 , but lefle than 793 . Wherefore, faith he, $792=3-\sqrt{2}$. That is, (for fo, I hope, he would be underftood) 792 of his meafures, equal to $3-\sqrt{2}$ of mine. The root of which 792 is equal, he faith, to 28 fere ; (that is, to fomewhat more than 28, though leffethan 29:) The product therefore of 28 multiplied into 793 is, fith he, the Fourth Proportional. That is, according to his Al thmetick,
DV. DX. DY. A fourth. $\}$ are in continual Pro 500. $\sqrt{792} .792 .792 \sqrt{792}$.$\} portion.$

I need not tell You, That there is an Errour in his Calculation. ('Tis visble, and too groffe.) I thall onely tell You, what I rake to be the Occafion. Having caken 792 in his meafure, as equal to $3-\sqrt{2}$ in mine, for his Third cerm: And, obferving that, in my Analogy, (becaufe the fict term is:, ,) the Square-Root of my Thied cerm, is equal the firft reim is 500 ,) ic mult be fo to. And hence cons cludes, Thas the Third Term multiplied into its Roor, in his Anslogy, (becaure it did fo, in mine,) will give she Fourth Proportional. Whereas a little Arithmerick mighr have taught him, That, although $\sqrt{ }: 3-\sqrt{2}$. be the mean-proportional berweea 1 and $3-\sqrt{2}$;jer is mor $\sqrt{792}$ the meanproportional becween 500 and 792 , bur between i 82792. I fobeir to advertife further, That his Calculation, whecher Right or Wrong, doth, no more than mine, anfwer his Geomerrical Conftrution, (for his 792ل1792, or 22176 , is $\mathbf{n 0}$ more equal to the Double of 500 , than my 1,997 fore to the double of 1 ; but, as he compures it, more then Tweloe times de great ; I hould have faid, More chan Two and twowty times:) Becaufe it was not bis defign by an Arithmetical Calculation to provethe crurh of his Geomerrical Conftruction ; but, to thew that feveral Compuntations Aritbmetical do not agree ammongf abemfelves. And this, if he mean it of a Right and a Wrong, I Chall eafily grant him : And the Inftance he hath brought, doxh prove it.

His Third Atrempr upon my Demonfration, is, To rell 7 bomes, what he thinks to have been the Occafion of Miftake in my Calculation. (For, thac there is a Miftake, either in His, or Mine, is very certain.) T be Errowr, he faich, is wo ather. hate thic, That I take, DX to be equal to $\sqrt{ }: 3-\sqrt{2}$. And tistre, thar I do fo take it. But why is it an errour, fo to do? He thinks,That I did tbwe argwe; Becaufe i mulsiplied into $3--\sqrt{2}$ makes $3--\sqrt{2}$, therefore $\sqrt{: 3}-\sqrt{2}$ is the mean proportional between 1 -and $3-\sqrt{2}$. Why he hould think that I do thus argue, there appears no other Rearon; but, Decaufe he chinks it is an Errour, and it is fit that I Should be thought to Erre. For there is not in my paper any mention of fuch Multiplication, or, of what would be the Product of it. But, fuppore I had thus argued, Why Sould be think it an Errous fo to argue? Tis true, he
saith, That if $3--\sqrt{2}$ be multiplied barely inte 1, it makes $3-\sqrt{2}$ sithout alteration: (Yes, it doth $\mathrm{fo} ;$) But, if nusaltiplied insto Ons-lime, it makes a Rectangle. I might bere ask, Whecher when he faith $3--\sqrt{2}$ multiplicatwe in Rluam Limeaw, facit Rectangulum, He mean, the Lime $3-\sqrt{2}$, or the Number $3-\sqrt{2}$. If, the Line, he Chould have faid Muliplicata, or racher ducta (for Linea is of the Feminine Gender:-) But if, the Nuimber; then the Lacine is Frue, but the Geometry is Faffe: For a $N_{\text {umber mulriplying a }}$ Line, doth not produce a Rectangle, but a Line ; Two Yards being as much a Line, as One Yard; not a Ratturgle. But I am content to believe, that he intended it of the Lime $3--\sqrt{2}$. And then, tis very true, That the Lins $3-\sqrt{2}$ into the Line 1 , makes 3- $\sqrt{2}$ a Rectangle, not, line: (Nor is there any other reafon why he hould think I was Ignorant of it, but onely, Becaufe He Knew it ; As if he choughe, It ought to be prefumed, That I am lgnorant of wharever He knows.) But, 1 luppole, he knows alfo, That this Rectangle is equal to fome Square ; and, That the Side of this Square is a Line; And, That this Live is equal to $\sqrt{ }: 3--\sqrt{2}:$ And therefore the Line $\sqrt{ }: 3-\sqrt{2}:$ is the mean-proportional berween the Lines I, and $3--\sqrt{2}$, as I affirmed. And then, Where lies the Miftake ?
So that I fhould not argue (as Mr Hobs imaginerh) The Line 1, multiplied by the Line $3-\sqrt{ } 2$, mates the Line $3-\sqrt{2}$, and thergfore $\sqrt{ }: 3 \rightarrow \sqrt{2}$: the Root of this Limesis the Mean-propertional ;i But rather thus, The Line I, inte the Line $3-\sqrt{2}$, makes (not a Line, but) the Rectangle $3-\sqrt{2}$; To which Rectangle if we fuppofe a Sguare Equal, The Side of this Square will be a Line (not a Rectangle) aind this Line will be equal to $\sqrt{: 3}-\sqrt{ }$. And therefore the Line $\sqrt{ }: 3-\sqrt{ } 2$: is egual to DX the mean-proportional between the Live 1, and the Line $3-\sqrt{2}$. that is, between the Lines DV, and DY.

As for example ; Suppore we this I, to be IF, (or if the Symbol difpleare him, in ftead of IF, he may fay Owe Foos, and then 'twill ceafe to be a Symbol;) If cherefore

$\$ 44$

DV be equal to IF, or F into is DY will be equal to Finto $3-\sqrt{2}$, (for that DV co DY is, as to $3-\sqrt{2}$, he doth not deny:) And consequently, the Lines; $D V=$ Finto $1, a \operatorname{din}=\mathbf{P}$ ixto $3-\sqrt{2}$, will contain a Rectangle DV \times DY equal to $F F$ into $3-\sqrt{2}$. Which Rectangle is therefore equal to the Square of the Mean-Proporcional DX, and the fide of chat Square will be, Fisto $\sqrt{ }: 3-\sqrt{2}$. =DX. And, confequently, as the Firlt Terme IF, multiplied by $\sqrt{ }: 3-\sqrt{ } 2$, gives F into $\sqrt{ }: 3-\sqrt{2}$ equal to the Second DX, foDY $=\mathrm{F}$ into $3-\sqrt{2}$ the 1 hird retme, multiplied by the fame $\sqrt{ } 33-\sqrt{2}$, makes the Fourth term Finto $3-\sqrt{2}$, into $\sqrt{ }: 3-2$. That is, , he length of che Firlt term DV, whatever it be ; mulciplied (not by 2, as Mr. Hobs would have it, but) by $3-\sqrt{ } 2$ into $\sqrt{ }: 3-\sqrt{2}$ is the Fourch Proportional. Nor was ic any Errour in me, fo to affirm. The whole Proceffe of the Calculation is this.

$$
\begin{aligned}
\text { IF, or } F \text { into } 1 & =D V \\
F \text { into } 2-\sqrt{2} & =D Y .
\end{aligned}
$$

therefore, $F F$ into $3-\sqrt{2}=D V \times D Y=D X q_{0}$ and, F into $\sqrt{ }: 3-\sqrt{2}=D X$.
Then, As $D V=F$, is to $D X=F$ into $\sqrt{ }: 3-\sqrt{2}$. So $D Y=F$ into $3-\sqrt{2}$. To $D P=F$ into $3-\sqrt{2}$ inso $\sqrt{ }: 3-\sqrt{2} 2$. Not, to DP =Finto 2; as Mr. Hobs affitms.i.

Thave now done with His Reply to my Refucarion of his precended Doubling of the Cube. There was, he rells us, befide this, A nother. Refutation of it ; which; he fapth, is very Probable. And I could cell him of a Third ; from a Noble Hand. Bar chis Thitd.was in Symbols, and rherefore the did not thisk fic to underfandit, or cake any noo rice of ir.

That other Refutation, which he allows to be erey Pro Gable, is this.

$$
\begin{aligned}
& A V=3 . \\
& A S=\sqrt{2} .
\end{aligned}
$$

SV, or YD $=3-\sqrt{2}$.
The Cube of AD is $=8$.
The Cube of DY $=45-\sqrt{1682}$ =almoft 40° For $45 \sqrt{1685}=4$
DY therefore is foncewhat loffe whan the \mathcal{G} reater of the two Mean-Proportionals between AD and DV::
For Anfwer to this Demonftration, he thinks fit to examine, wherher $45-\sqrt{1682}$ be indeed equal to the Cube of DY or $3-\sqrt{2}$.And he attempts two Merhods to fatisfie himfelf.
He proceeds firf upon this Suppofition; That if $3-\sqrt{2}$ be multiplied into it felf; and that product mexltiplied agoain by $3-\sqrt{2}$; this later. Product will be equal to the. Cube of $3-\sqrt{2}$. And, with much labour, and manifold Reductions of Surd Numbers, and the Application of fome intricate Rules, he doth at length accomplifhthat work; and finds, thar $45-\sqrt{ } 1682$, is indeed, according to that Merhod, equal to the Cube of $3-\sqrt{2}$.
I hall not trouble you with an accounc of his intricate proceffe in that inquiry ; becaule you may fee it in himfelf: but onely fhew you, in the operati-

$$
\begin{aligned}
& 3-\sqrt{2} \\
& 3-\sqrt{2} \\
& 9-3 \sqrt{2} \\
& \frac{-3 \sqrt{2}+2}{11-6 \sqrt{2}} \\
& \frac{3-\sqrt{2}}{33-18 \sqrt{2}} \\
& \frac{-11 \sqrt{2}+12}{45-29 \sqrt{2}} \\
& \text { or } 45-\sqrt{1682}
\end{aligned}
$$ on annexed, with how much eafe that might have been difpatched, of which he makes fo much ado.

But a Single Inquiry doth not fatisfie his curiofity ;: and therefore he attempts a fecond Method of finding the Cube of $3-\sqrt{2}$: Upon a Suppofition, That the Cube of $3-\sqrt{2}$,
is equal to the Cube of 3, together wirh 3 times 3 into the Square of $\sqrt{2}$: Wanting 3 Squapes of. 3 , into $\sqrt{2}$, and, the Cube of $\sqrt{ } 2$. Which had he purfued aright, would have given the fame account with that of his former Inquiry : as by the Operation annexed may appeat.

> The Cube of 3 is.
> $=+27$
> 3 tímes 3 , into the Square of $-\sqrt{20}=+18$
> 3 Squares of 3 , intro $-\sqrt{2}$
> $=-27 \sqrt{2}$
> The Cube of $-\sqrt{2}$
> $\exists-2 \sqrt{2}$
> Therefore, theCube of $3-\sqrt{2}$,
> =45-29v2
> or $45-\sqrt{ } 682$.

But, in the purfuit of this Rule; inltead of $2 \sqrt{2}$ or $\sqrt{8}$, be tells us, that the Cube of $\sqrt{2}$, is Equal to 2 , (that is, The Cube of $\sqrt{2}$, and the Square of $\sqrt{2}$, are the fame) And, for $27 \sqrt{2}$;or $\sqrt{14} 58$, he takes its near value in effable Numbers, vizo $+27-38_{\mathrm{it}}^{3}$ 38 K. And then funs up the value of his Cube, thus found, to be 45-40 ${ }^{\text {A }}$ -
$+12-2$ $745-40_{12}^{2}$ Which is much Lefe, he rells us, than $45-\sqrt{1} 982$.(He doould rather have fayd.' Tis much Gredter : for that is almoft 5 , and this is leffe chan 4.)

And, leaft we mighi otheriwife chink it an Errourof Negligence, not of Iguor ance; He doch, upon Deliberation 1.9%. Choofe the Érrour, and Rejeft the Truch; Blamingchofento think the Cube of $\sqrt{ } q 2$, to be equal to $\sqrt{ } q 3$.

From hence he doth infer fome . Cblervations. Firfh That His two Compmattions (though botb performed accore ding to tbe Rales of Atgebra) do not agree. Which, abaging his Parenthefis, is very True : and, the Reafon's plain.

Secondly; That Neither of then' agree with bis Geosetrical Proceffc. Which is True alfo; and, the caufe Evident. And therefore Thirdly, (but here I am not of his mind) Thiot it is not meet to examine Geometrical Problems by Alsh Hricat, or Arithmerical Calculations.

All that I Ghall Obferve from it, is but this. If Mr. Hobs did underffand the ftrength of thefe Confutations, and did yet think fie to publinh himelf the Authour of that Paper thus confured, (when tee might have concealed is 5) and pretend is to be all True: You may Pitey his Pradence. If he did net underffind ir; You mult Pisty his Martematicks.
I had thoughts, here, of inferting another Probling of the fame Authour; and, performed much after the rme raced with this of the Duplication of the Cube. 'Twas, To find timo Mean-Proporiionals betweentifio Lives given. Which, as being a Noble Atrempt, and rarely petformed, was lately Prefenred to His Majefty. But this being immediately contuted by chat fame Noble Hand, which had, bur a lierle before, Confuted rhat of his Duplication of the Cube: And, being fince Retracted (as I am informed) by the Authour hionfelf, and confeffed Eironeous: 1 hall forbear, ar prefent, to crouble You with Yt, or its Refutation; till Mr: Hob's Ahaff think fir to Refume it again, or neww Vamplt, as he did his falle Quadratures once rejefted.
Nor hall I detain You longer in examining his Mathematicks; of which, I fuppofe, You may already have feen enough to make you V eary, For, though Thomox upon a like Intimation, tell him, Noe ; but Paradosis Detetiter: Dial.pag. 177. 1 am apt to think, You witl rather have caufe to fay, as He theres pag, 178 . Faxadoxa now funt; eAbjurda funt. Which yet is eafly Anlifered. For, as he tells us of his Politicks, if we may beleeve bim, Lefoh. p. 56. That His Doctrine iberein is gencrally receivod by $1 / 1$, but thofe of the Cleigy; and, Their Taftimonies'the tells us, are Irvalide: So, His Geometry (he may tell us as well) is not Refuted by any but Mathematicians : whofe Judgetwent in this cafe, is not to be credited.

To the reft of this Dialogne, it is but little that 1 fhall fay. For, Your-felf being concerned in it, Yoll have, I \mathbf{K}

Prefume, given Your felf a better account of it, than I am like to do.

But here, I think, that firlt he doth You wrong: Afcribing thore Experiments to the Society at GrefbamColledse, which are peculiarly Yours; Being Made and Publifhed by Your Self, before that Sociery had a beginning.

Yet I fuppofe, he did it not fo much either for your Dipparagement, or, to Gratifie that Society; as, to Advantage the Reputation which he promifed to himedf from it ; as thinking it \& more Noble Vistory to have outdonefuch a Society; than to have the better of a Single Perfon.

And I am the rather induced to beleeve this, Becaufe I do not find that he hath any Superlative Refpeqt for them: The Defigne of that Piece feeming rather to look the 0 ther way; So many faults he finds with, the Name, the Number, the Perfons, the Principles, the Defigns, and Experiments of that Sociery.

He is not fatiffied, pag. 3. with the Name Society, but thinks they ought to be called an Academy: For, in France and Italy, he tells us, fwch Comppanies are fo called; and; becaufe Mr. Hobs hath been in France, he ought to bring us 2 Name from thence. Which Acadomy, he defines to be, Such a Meeting as wherref Mr Hobs was one; (as that at MrSenser his Chamber.) For though this Definition do not at prefent agree to that Society ar Grefham-Colledge; Yet it is to be fuppofed that it Will very fuddenly; when they fhall have found True, by Experience, what he now tells them, That thoy will mever be able to make any advancte, what ever fludy or induftry they ufe, till they make afe of (Him, or at left) His Principles.

Nor doth he think fit pag. 2, that they fhould confine themreives to fome Certrin Number of men : Bur, that it Mould be free, for any that will; to intrude thamélves. For, London being a publick place;' and Gref-
ham-Colledge ftanding in Londos, it oughe to be free fo any man to intrude himrelf into any Company that meer atGreßham-Colledge.

He then thinks tit to give his Judgement, pag. 3. of the Perfons, which are wont there to meet: That D will tell fories emongh, if jou will believe bim; H, I, K, are Alge. briffs, and therofore onght to be excluded, (becaule, "cis fic that every one that will, Niould be admitted;)That E,F,G ferve to msake up a Number ; \&xc. Only, there is one C, which is an Homeft, Subtile, Ingenious Perfon, and, Known to Mr. Hobs. And pag. 16 , That There is no Differenee, beaveen Theni and a profeffed Mechanick, but this, That the Mechanick is rather to be preferred.

Theit Pretenfes, fie would have it thought p.2. are fuch as His are wont to be; viz. That the Knowledge of natwere, to the great Advantage of this Nation, and of all Mankind, muft cither be Advanced by Them, or that we mujf for ever Defpair that it will be done by Any. But herein, I think he dath miftake them. Tis true indeed, That Mr Hobs doch often thus precend, or what is tant-amount ; And therefore thoughe ir fit that His Doctrine Thould be made the Standard for Sohools and Pulpits : And, Leff. P. 56, 57, that, it he thould not recommend it for fuch, be bad written it to so piepofe. Nor is it Vasnting, to defire, that by entire Soveraignty it be Impofed upan the Univerfities, \&cc. but, a Necelfary part of the Bufineffe he took in band. And Dial. pag: 180. He believes, That Never Any will be able to give a better accosnt of the Effocts of Nature, than He bath donc. And therefore àdvifech Thomas (Dial. Phyf.p. 32,) to reft contented with Phyfica Hobbiana, and to Live by his Ethicks : For,all that the Cbarge and Furniture of orher men can amounc to, is onely an Atcempt, he tells us pag. 23. Eatemus tantwm prodire quaistma antica prodierat Hobbiss. But, that any fuch have been the Pretenfrons of thofe at Grefham-College; as That none Ghall ever be able to adde to what They fhall do : I have nor yet heard. For though M Tobswculd

150 . HOB B U S
have it thoughts pag 1 that they bave taken up their Principles from Aim, yee fuiely, not Att his Princlples; nor this, in particular, Thus, to Preiend: For, though ebere are in that Sociery, many Noble, and very Excettent Perfors $;$ Yetw do not think, that the Etimate of their Worth, is to be made by what onely ls dode-atehofe Meecings' (fo Sinall a Portion of their fmployment : Much lene are we to think them ouiley of to murch Vanity as Mr Hobs would, very unhand fomely, infinuare:

Eut their Succeffe, he thinks, will be far fhotr of what he vould infruase to be their Preterfe: and doth expect (ion, fo much he there intimates, that. Themfelves will be Defpifed, and Phiiofophy for their Sakes. For though in his Epifte to Sorberius, he would feem to promife this Meeting fome good Fucceffe, that dubitandum non fit guin Conventus hic promovendis'Scientiis plurimum it profutirrus ; yee that Promite is there fufpended upon Condition, That they moill proceed apou his Principles; othervife, (he haph read their Deftiny,)they muft never expeet to do any good; what ever their Study, Pains; or Experiments may be: Nam Conveniant, Stidia conferant, Expeximenta faciant quantions
 pag. 8. he rells us, That, xithoint admitting bis Hypotbefis, It is Impolfible, but ibat all their Caft, their'Skill, and Labour woill come to nothing. And, pofitively P. 5: That HeDe \int pairs of any Fruit fromithes Meeting.
Their Principles ${ }_{2}$ which he fometines intimares, they Have Borroved from him; as pag. 1 .Sometimes, that they Should have done is, and Ought to do yet, or elfe they muit defpair of fucceffe ; as in his Epifte, Treface, and p.8.23. \mathcal{O}_{0} alibi. are efpecially thofe two; Concerning Motion and, concerning his Simple Circular Motion. Firf therefore he would have it thought, That He was the Inventer of. this Notion, That Senfoon, and otber Effects of Nature are performed by Motion; To prove which, he, twice at left,
ignemari Natiram. His ocher Invention, of Simple Circular Motion, he rells us, pag:9. is the Same mith that of the Earths Annual Metionsimeredwaed by the Coperinigan Hypothefis. And sherefore Mr. Hobs mint reeds be the firf Inventer of Borh,

The Kmimedye of Nimure, on Cimfes Natoral, he would noe have them took to Gisd in Libris Magyerarump Prafat.) Bur, in Libris Hobbii, thole Caules may be found, than which (he told us, in his former Dialognes, p.180.) be doth not believe that better mill ever be found by any.

He would have shem take heed of medling with chofe things que eapi mon poffunt, (for he thinks fic to prefcribe the Subjeit, as well as the Metböd of their Inquiries:; as Rarefaction σ Condenfation (for thefe are things gure intelligi mon polfunt;) and, Imnoaterial Subftances, mof of al!, (for fear lealt it fhould be chought, There is a God, or Soshls Imasortal.):

Their ivay of Experimental Inquiry, he doth not like. For', though in' his former Dialogues, pag. 18o,'he dort acknowledge, That theHiflory of Nature is hereb. Inriched: mithout which thrKinosoledge of. Native is but in vain expected And herespag. 2 Tturs we aro not iafily to take xpon tru/s what is related in Stary: Yeet 'tis; he faith, pag. 2, 23. \&.c to no puypefe to make thele New Experiments, (whethe to Furnifh themfelves with New Phenomena, or to fatisfic themfelves of the Trutf and Cettainty of what is relatec by others ; For, firf, unleffo All be prefent at every Nen Exppriment, Some of thens minf esither. Betieve thereft, on fill remain in Dosibts mext, Becaufe there is riety day morr to be fem Abraad, (in Hearen, on Eirth; by Lant, by Sea, than the Few Experinooxts which thoy can mink in a Privatc Room: But molt efpeciadly, Becaule, after all their Pains, thein Coft and Charges, the uttermoft of what they can bope for, is but, To fine out; what cilr Hobs buth found out al resdy.
Befide thefe genetal Animadverfions on that Meering, anc

What they do ; and; his Prognoftication of the Event:

 He thinks fit in particular to apply himelelf, as he pretends, to the Experimparts made at Onghomis-Colledge, by that Society; Meaning indeed, thofe made by Your felf. (at Oxford and elfe-where) and Publihed by You in char Excellent Piece which You call Experimexis Phjfico-Mechanical, iouching the Air ; written by way of Letrer; to that Noble 1 ord, Your Nepheiv, the Lord Vicount of Dwngarvan, Eldeft Son to the prefent Earl of Cork, Your brothes. For though thar Piece were pubilifhed long before the Meeting of this Sociefy; yet (becturfe himielf is fo good at Prognofticks) he might think You wrote it only by way of Prognofication of what was afrer to be done by a Meesing, which was not then thoughtiofsNow, that he might nor wapr an Adverfary; He is pleifed to Suppofe the Author of thofe Experiments to Maintain, whatever Mr Hobs hath a mind to Oppofe. And he begins with that of Vacwons:

I do not remember, that You have therein any where declared Your Opinion, Whether there Be , or Be not, a V'acoum.' But onely selated marter of Fact, as it appeared ur on Your Experiments, withour inferring, from is either the Affirmative or the Negative in chat Queftion. That nuch of that whigh We call Air, is Drawn out of the Recipient, or the Recipient (in a great Meafure) Empricd of it; it's very like You may fomewhere A firm, (and, I think, Mr Hobs doth nor Deny :) But whether or no fome Homogensoius ettber, as Mr Hobs would haveit, do fucceed in the place of that Heterogenisons Miftore which we call Air, fuch as that is wherein we Breath; becaufe You have not thoughr fit to deliver an Opinion,Mr Hobs thinks fit to determine for You what Your Opinion thall be. And, becaure He is of Opinion, There is not a Kacuixm; He will therefore have it Xour Opinion, pug $4,28 \mathrm{c}$. That here is. In order to the Confutation of which, there is monoft other bis Poffiulata, this Neeeflary One, (which
be hath off occafion to have secourfe anto,) Smppono, Uni perfun mundune effo Plemuer, p. $12,24,25,8 c c$. And from hence, he doth very ftrongly infer, Erge, Non datur Vacuuws.

In likemanner he deals with You touching the Nature of Elmids. Ir's poffible chat You may have fomewbere intimated, That in divers of thore chings, which, as to Senfe, appear Fluid, and Homagencom, there are a multitude' of Heterogenoous particles not Flmid. (For it is like You have fometimes feen a Thourand little Moats dance in the Sun-beams ; which; when the Room is all equally, cicher Light or Dark, no Senfe can take nocice of, but deems the whole, for ought appears, to be Fluid and Homogeneous.) Bur, wherher there be or be not in Nature a Body propetly Fluid and Homogeneous, whole every fmalleft particle is, like che Whole, Fluid and Homogeneous; Becaufe You have not (f far as I remember) yet declared Your Thoughts; He thinks ir fit (being good at orher Divinations as well as at Prognofficks) to tell You What they are. And, becaufe it is His Opinion, That there is a Body thous. Fluid.; He will have it Your Opinion (chat he may, have fomewhat to difpute againlt) That there is not: And, Thar the onely ching which diftinguitherh the Fluid from Non-F luid, is the Smallneffe of thofe particles wherenf it doth conful', pag. s. \&xc. For Confutation of which, You are to allow him this Poffularwm, pag. 4. Suppono, eA erem Fluidum, i. e. facile divifibilen, in parses femper Fluida, fempergue el erems. From whence it follows, very naturally, That there is a Fluid Body. Oued erat Demionftrandsm.

And if You flall be fo Unreafonable as not to allow him thefe Poftulata; Defperare facis omnems Conventous viftri fructum. pay. 5.

Again; When You intimate, That there may be in this Common Air wherein we breath, many fmal Particles, which, like fo many fmall Hipes in a l.ock of Wool, if

Crulhed by frength, or fome incumbent Weighr; intos Narrower Space, will, upon the Remioval of that Prefliure, Dilate or Expand themelves into a Larger Room; upon a like principle as that of a Spring, or aBendedBow, recuming to its former pofture when the force that bent ic cederth. Firt, He doch nor allow any man tobelieve, thar there is in maute any fuch ching as a Spring, or Motion of Refititution, who dorh not imbrace bis Hypothefis: pag. 8. And, then, By'Air, he would have to be underitood, Aerem ab omi tería aqueq́g efllwrois purum, qualis puratur effe cetber; pas: $4 ; 6,25$. 8 cc . (You need not be folicitous about the Symax; for Mr Hobs Audies Elegancies, nor, True Latime.) For Mr Hobs is very dexterous, in Confuting ochers, by putting 1 new Sente upon their Words, rehearfed by himelf; different from what the fame Words rignifie with other men. And therefore, if You fhall have occafion to fpertof Chalk; He's tell You that by Cbialk, he means Chaf!: and then, if he can prove that what You fay of Chalk, is not true of Chieff; he reckons himfelf to hive gotten a great victory. And in like manner; When that Heterogeneous Mixture (whatever it be) wherein we brealh, is commonly known by the nathe of Air; and this Air, wherein wie lide, abounds, You lay, with jaerts of fuch a natare: He cells You, that, by eA ir, the underftands fuch ant of ther as is amonos the Stars; And, chat, in this Air, there be no fuch Particles, is proved by that Poftuilatuint we lat mentioned; Sappono, Aerem fuxidum, \&c.

Befide thele goodity Confutations; He hath one great Engine, which he callis his Simple Circular Motion, wich which he hopes' to falve aff the Phasompena in Naturc. Which, by his Defcriprion of it, Corp. Cap. 2 I. I take to be fuch as that of the Good-WF omans Frand that turns the Whoel when the Spins ; Or, the Chandlers hand which turns rhic Quem when he makes Murfard. Where every Line, in the Hand or Body thus moved, is fuppored to retain : "fition, fitl Parallet so it folf. Stuch asthat of the dothefis.
But 6 Dial, p. 179. He thinks the Reafon why his Hyporthelis is not received, is, Becanfe very fow Men, be ears, are able to Apprehend fuch a Motions For (Mr Hobs zeing the fifft that ever caughr his (irandame to Spin) heoer. nas ibere any man, he farth, Wofore binm, that took notice of ${ }^{3}$ y Juch Motion. (For, shough he tell us,' in che fame page, hat Copernic us uffribos'the Jame Motion to the whote Body of the Earth; Yet Mr Hobs his Book, De Carpere, Yotr ought to nnow, was writren long before the Coperaican Hypotbef is was thoughtupon.) To hetp therefore the Fainfy of fuch as are nior able to Apprehend this Morion, the dorh, in cthat and the following page, fpend fome time to give a Socond Defcription of is.
And then (becaufe he doth nor yet find his Daftrine to paffe curranelys) He doth; - a Third time, in his'Dixiog ios P_{y} ficus, P.9, 10. give yet a further Defrciption. Fot he doth not doubr, pag. 8. but that, if it were Underflood, it would be Received.
The Refult of that Defcription amounts to this; That, by his Simple Circular Motion, he means'; Puch a 'watotion' as is neither Circular, nor Simple. For he dorh nor mean that of Converfon, or Circumbotition, as when a Plain moves round upoin ome Conter, or a Solid ipon one elxis, (Which You, perhaps, vould have thought the moft simple of all Circular Motions :) But fuch a; Motion,as wherein no Two Points are froved upon the fame Cinter; nor, any Two Linass (fuch Two 1 mean, as are inot parts of the lame Streight-line,') upori the fame Axis: bue fo moin Circles, he faith, there are a wpon fo many fevieral Ceinters, wistiere are Toinis in the IThold. Dial. Pbyf p. 10. Nor doth he mean, That thofe Points; by this Circslar THotion do defcribe Circles; but (notiom in fe redewntem quentibet) any Figare Whatever whiceby thity may return aguan oo a plate where once
 kind of Vorrigo, and may, for diftinetion fake, be called Hobhiena; but, why it Chould bee called Simple Circular, I fee no reafon at all, fave onely, becaufe it pleafech Mr Habs to give ir char Name.

And shis Simple Circular Motion; (which,though nothing, he faith, be more Eafec to be apprehended, yet fo Fom, he rells us, are able to Apprebend;) He atributes to all, the Smallef, P arricles of Eart h and Water whenevet. And, for Proof of is, He doch Suppofe, That thus it is, and thus it $\varepsilon_{\text {ver was, }}$ and that "ris Natural; and in this Ererpal Canfe, he tells Thomin, he ought to Acquierce. Dial. Phy. p. 7, 10.8 cc. And therefore it is nor fir for You or Me to inguise further into the reafon of it.
I Thall not trouble You with a Particular Accounc, how he doth apply this tiniverfal Engine to produce the feveral Effects of Nature; Or, with any Confuration of it.
For, (befide what concedris Your felf, which how weak it is, I need not tell You ;) the reft is little elfe than a Reperition, out of his Book DG Corpore, of what D. W. hath Refured long fince. And, though Mr Hobs have thought fit to Repeat it, firft in his Former Dialogues, p. $179 . \% \mathrm{c}$. and now again in this Dialogus Phyficm; (and, boiv oft he means to Repeat it again hereafter, who can tell?) It will nor be therefore neceffary to repeat the Refucation, fo oft as he repears his Errours.

Onely I cannor but obferve, in the general, a great Refemblance between this his Phyfical Hypothe/is, and, his Geometrical Conftrutions: For as, in thefe, he draws a Multiunde of Lines whereof there is no Ufe made, as to the Conftrution or Demonitration of his Problem; (as You fave but now, in his Duplication of the Cabe :) So, much of bis. H ypothefis is to no purpore, as to the Effects of Namure. For whereas the main part of his Hypotheis feems to be placed in this, That the Motion is of $\int w \in b$ a Kind; (viz.
-Simple Circular, wherein each Lime is Atill to preferve : Paratlel Pofition:) In at his Applications of bis Engine ir this Dialogue, I do not find that che Paralblifon, which this Morion is ro preferve, hath any influence ar all upon the Salving of thore Pbanomiena ; but, that the Work proceeds evere whit as well, which ever end go forivard. For, the Immediare Effeer thereof being no more bur this, that they Knock and Jufle one another ; any confuled Mocion wharfoever, mighr as well have ferved this cum for this purpofe, as the Simple Circular ; (and therefore that pars of his Hypothefs, which fuppofeth the preferving of this Parallel Polition, and his Specification of the Motion to rhat end, are to no purpofe.) Nor is ic leffe ufual in a gamie at Bowls to fee the Bowls in aiVolutation Knock one anorher out of place, (where no fuch parallel yooftion of every line is preferved;-) thani, at Shovel-botaod, to fee one Piece knock off anocher, though this (as Mr Hobs.calls it) be a Simple Morion, but not Circular. And, what he would feem to make the Reafon of his Arbitrary choice of this Kind of Morion, pag.9. That a Simp.'c Circular deth pro. duce a Simple Circular: How far ir is from being Univerfall) True, is evident from the firft Intances that we gave of ir. For,though the Hand that turns the Wheel or Quern have this Simple Circular Motion; Yet, who knows not that the Morion of the Wheel or $Q_{\text {mern, }}$, turned by it, is a Circumvo lution on a fingle Axis. Nor is it at all Peculiar to this Kind of Motion, to produce a Mation Like toie felf; bar every way as common to other Motions. As is Evident in the Wheels of a Watch, where each by a Circumvolution on its own Axis, communicates to the next the Same Kind of Morion : Which may indeed, as properly, be called a Sim. ple Circular ; bur, is not that Vertigo Hobbiana which we be now fpeaking of.

The Refulc therefore of his Nataral Philofophy, (For inftead of a Confutation; 1 fhall onely give Youa hort Synopfis of his Poftulata, with his Inferences from them,

Firf, He;doch Suppafes, That All is F $F_{\mu l}$: From wheace he is to Infor, Therefore thers is no T acumms.
Secondly, He dorh Sxppafo, That the Air is perfethy Fluid: In order to Prove, Therefore there is forsewhat Fluid in Nasure.

Thirdly, He dorh Suppofe, That tba Air is penfenly Homogemoons: To Prove; That it is not full of Heterogencons Particles.

Fourrhly, He doch Suppofe, Tbat all Earshy: Pavticles are in coutinual Motion: To the End, that they may. Knock one another.

Fiftryy, He doch Suppofe, That this Motion is Simple Cirandar: To No purpofe.

Sixchaly, He doch Suppofe, Thar thus it Ever was : And Therefore wee oughin not to inquire the Canfe of it.

Seventhly, He doth Suppofe, That his Suppofition is a fufficient Proof: Elfe we hive none at all.

Laftly, He doth Suppofe, Thut what be Aiffirms is well Demoufferated: And Therefore, what ever can be [aid ag ainff it, is int Refaratio, bus Kefutatum.

You may Think perhaps, That, if any Orher will pleafe to Suppofe the Concraty; I his Refunotion will be as Cogent as his Denoonfration If \{o; becaule I ought to be Civili co a Perfon whom 1 Honour, 1 will not cake upon me to confute thole T boughts.
I bave but one Remark more with which I mean to rouble You, before I difmifle this Diplogue, as I have done the reff. And it is, concerning the Authors Ingenuity therein towards Your felf. For whereas, If thofe Expertments whereof You give an Hiforical Narration, (visibout ony Reflexion on him at all, fo far as I remember, or fo nuch as: Mentioning, nuch leffe Difparaging bis. Hypohefis,) do indeed fo direstly conduce; as he pretends. all Iong, to the Eltablifining of his Doftrine ; (guafi Narura uodam Confilio ad Phyficame fuam Corrfirmandam oblata;) might have expeqted a recurn of Thanks, for Your

Coft and Pains in a Work fo fublervient to His Defig' and, for Your Favour in Communicaring chofe Coitly Experiments; for him, as freely as any otber, to make uid of:s Yet, Becaufe, unhappily, (as if You had thought it lawfull to be Civil to fome Uther Perfons,) You have iet fall fome Words of Commendation or Refpeit, for fome few Perfons whom You had occafion to mention; Ho thinks himfelf concerned, inflead of Thanks, to Write a Book againff You.

But while I am Writing this laft Paffage, I may feem to have forgotten the Bufineffe I was about, and to which I am to recurn again: Which is, to befpeak Your Favour, not, to Aggravate any thing againft the Author of that Piece. In order to which, I have made that feeming Digreffion, to take a View as well of This, as of his Other Six Dialogues. From whence if You think I may Infer, either that You May Neglect fately, or, Ought to Pitty, the Author of thofe Dialogues; I have not then loft my labour: But, if You hhall grant, that I may infer Both; I have then done my Work. For I fhall not then doubr, but that You will either Spare him altogether, or at left ufe him more colercyfully than He deferves.

And, truly, there is one Argument yer behind, which I did not forefee at firft, but doth fuggeft it felf upon the View of what I have written. When I look over what I have been Pleading in his behalf; my Apology it felf, I doubt You will fay, is Sharp enough. And, though 1 have often checked my Pen, and fpoil'd an Argument more than once (as You can witneffe) which would, if preffed home, feem too Severe : Yer, I mult confeffe, He lies fo open to the lafh at every turn, that
Difficile eft, Satyram non fcribere.

Nor is it, almolt, poffible, the Marter being as it is, to give any tolerable Account of what he Writes, but that a bare Narrative, be the Words never fo Mill. '! be severe
enough. And, faving that You are a Perfon extremely Civil, it will be hard for You to Touch, almoft any where, the Parts are fo Tender, bue that the Blood will follow.

And, having fand thus much, I fhall not trouble rou father with any more:Butleave it to Your own Thoughts, whether You will Judge it neceffary for Youto Oy any thing at all: Eqpecially, if You thall think, That I haki alreary faid too much. Yet, $i f$, inftead of Anfwering Mr Hocis You hall think fit, to give the World a further Account of Your Thoughts; for the Improvement of there Noble Experiments, whereof You have already give, us the Hiffory: You may thereby, Gratifie a Mulcituie of Worthy Ierfons who Honcur You; and fhath no Tore Oblige any, th:n

SIR,

$$
\text { Oxon.Febr. } 20
$$ 166I. 2

Your Honcurs

Very Humble fervant,

FOHNWALLIS

-

Digitized by COOgle

B.L 1

